Drought mitigation in cocoa (Theobroma cacao L.) through developing tolerant hybrids

Author:

Juby Baby,Minimol Janaki Seifudeen,Suma Basura,Santhoshkumar Adiyodi Venugopal,Jiji Joseph,Panchami Pottekkat Sidharthan

Abstract

Abstract Background Cocoa, being a shade loving crop cannot withstand long periods of water stress. Breeding for drought tolerance is the need of the hour due to change in climatic condition and extension of crop to non-traditional areas. Hybrids were produced by crossing four tolerant genotypes in all possible combination. The cross GV1 55 x M 13.12 didn’t yield any fruit due to cross incompatibility between these genotypes. Various biochemical parameters act as the true indicators to select tolerant and susceptible types. The major biochemical parameters considered after imposing stress included proline, nitrate reductase activity, superoxide dismutase content and glycine betaine. Results The drought tolerant hybrids were having high amount of proline, superoxide dismutase enzyme and glycine betaine content. Normally, plants having drought stress show low amount of nitrate reductase activity. However, in case of hybrids, the drought tolerant hybrids were having higher NR activity than the susceptible hybrids. The highest amount of NR was found in the control plants kept at fully irrigated conditions. Conclusions This experiment showed the role of different biochemical enzymes and osmolytes in giving tolerance to plants during drought stress. Logistic regression analysis selected proline and nitrate reductase as the two biochemical markers for identifying efficient drought tolerant genotypes in the future breeding programmes.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference50 articles.

1. WCF. Cocoa market update. World Cocoa Foundation; 2012. Available at: https://www.worldcocoafoundation.org/wp-content/uploads/Cocoa-Market-Update-as-of-.20.2012.pdf.

2. Prasannakumari AS, Vikraman Nair R, Lalithabai EK, Mallika VK, Minimol JS, Abraham K, et al. Cocoa in India. Kerala: Kerala Agricultural University; 2009. p. 72.

3. Minimol JS, Suma B, Shija TK, Shilpa KS. Genotypic and seasonal variations affecting yield of cocoa. J Agrometeorol. 2020;22:528–31.

4. Gilbert ME, Medina V. Drought adaptation mechanisms should guide experimental design. Trends Plant Sci. 2016;21:639–47.

5. Laderach P, Martinez-Valle A, Schroth G, Castro N. Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Cote d’Ivoire. Clim Chang. 2013;119:841–54.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cocoa Under Heat and Drought Stress;Agroforestry as Climate Change Adaptation;2023-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3