Author:
Li Shuang,Hamani Abdoul Kader Mounkaila,Zhang Yingying,Liang Yueping,Gao Yang,Duan Aiwang
Abstract
Abstract
Background
Leaf hydraulic and economics traits are critical for balancing plant water and CO2 exchange, and their relationship has been widely studied. Leaf anatomical traits determine the efficiency of CO2 diffusion within mesophyll structure. However, it remains unclear whether leaf anatomical traits are associated with leaf hydraulic and economics traits acclimation to long-term drought.
Results
To address this knowledge gap, eight hydraulic traits, including stomatal and venation structures, four economics traits, including leaf dry mass per area (LMA) and the ratio between palisade and spongy mesophyll thickness (PT/ST), and four anatomical traits related to CO2 diffusion were measured in tomato seedlings under the long-term drought conditions. Redundancy analysis indicated that the long-term drought decreased stomatal conductance (gs) mainly due to a synchronized reduction in hydraulic structure such as leaf hydraulic conductance (Kleaf) and major vein width. Simultaneously, stomatal aperture on the adaxial surface and minor vein density (VDminor) also contributed a lot to this reduction. The decreases in mesophyll thickness (Tmes) and chlorophyll surface area exposed to leaf intercellular air spaces (Sc/S) were primarily responsible for the decline of mesophyll conductance (gm) thereby affecting photosynthesis. Drought increased leaf density (LD) thus limited CO2 diffusion. In addition, LMA may not be important in regulating gm in tomato under drought. Principal component analysis revealed that main anatomical traits such as Tmes and Sc/S were positively correlated to Kleaf, VDminor and leaf thickness (LT), while negatively associated with PT/ST.
Conclusions
These findings indicated that leaf anatomy plays an important role in maintaining the balance between water supply and CO2 diffusion responses to drought. There was a strong coordination between leaf hydraulic, anatomical, and economical traits in tomato seedlings acclimation to long-term drought.
Publisher
Springer Science and Business Media LLC
Reference64 articles.
1. Oikonomou PD, Karavitis CA, Tsesmelis DE, Kolokytha E, Maia R: Drought Characteristics Assessment in Europe over the Past 50 Years. Water Resources Management 2020, 34(15):4757–4772.
2. Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J: Global warming and changes in drought. Nature Climate Change 2013, 4(1):17–22.
3. Sack L, Scoffoni C: Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 2013, 198(4):983-1000.
4. Xiong D, Flexas J: Leaf economics spectrum in rice: leaf anatomical, biochemical, and physiological trait trade-offs. J Exp Bot 2018, 69(22):5599–5609.
5. Zhou H, Zhou G, He Q, Zhou L, Ji Y, Zhou M: Environmental explanation of maize specific leaf area under varying water stress regimes. Environ Exp Bot 2020, 171:103932.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献