Characteristics, Relationships, and Anatomical Basis of Leaf Hydraulic Traits and Economic Traits in Temperate Desert Shrub Species

Author:

Tan Fengsen1ORCID,Cao Wenxu1,Li Xu1,Li Qinghe1ORCID

Affiliation:

1. State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China

Abstract

Shrubs are a key component of desert ecosystems, playing a crucial role in controlling desertification and promoting revegetation, yet their growth is often impeded by drought. Leaf hydraulic traits and economic traits are both involved in the process of water exchange for carbon dioxide. Exploring the characteristics, relationships, and anatomical basis of these two suites of traits is crucial to understanding the mechanism of desert shrubs adapting to the desert arid environment. However, the relationship between these two sets of traits currently remains ambiguous. This study explored the leaf hydraulic, economic, and anatomical traits of 19 desert shrub species. The key findings include the following: Relatively larger LT values and smaller SLA values were observed in desert shrubs, aligning with the “slow strategy” in the leaf economics spectrum. The relatively high P50leaf, low HSMleaf, negative TLPleaf, and positive HSMtlp values indicated that severe embolism occurs in the leaves during the dry season, while most species were able to maintain normal leaf expansion. This implies a “tolerance” leaf hydraulic strategy in response to arid stress. No significant relationship was observed between P50leaf and Kmax, indicating the absence of a trade-off between hydraulic efficiency and embolism resistance. Certain coupling relationships were observed between leaf hydraulic traits and economic traits, both of which were closely tied to anatomical structures. Out of all of the leaf traits, LT was the central trait of the leaf traits network. The positive correlation between C content and WPleaf and HSMleaf, as well as the positive correlation between N content and HSMtlp, suggested that the cost of leaf construction was synergistic with hydraulic safety. The negative correlation between SLA, P content, GCL, and SAI suggested a functional synergistic relationship between water use efficiency and gas exchange rate. In summary, this research revealed that the coupling relationship between leaf hydraulic traits and economic traits was one of the important physiological and ecological mechanisms of desert shrubs for adapting to desert habitats.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3