Plasma membrane aquaporins of the PIP1 and PIP2 subfamilies facilitate hydrogen peroxide diffusion into plant roots

Author:

Israel DavidORCID,Lee Seong Hee,Robson Thomas MatthewORCID,Zwiazek Janusz JerzyORCID

Abstract

Abstract Background The permeability of plasma membrane aquaporins (PIPs) to small solutes other than water greatly diversifies their potential functions in plant development and metabolic processes. One such process is stress signalling in which hydrogen peroxide (H2O2) plays a major role. Based on transport assays carried out in yeast, there are differences in the degree to which PIPs of Arabidopsis thaliana, are permeable to H2O2 and thus they may differentially facilitate transmembrane diffusion. Here, we test whether specific PIPs aid in the transmembrane diffusion of H2O2 to such an extent that knocking-out PIPs affects plant phenotype. We examined changes in growth and morphology, including biomass accumulation, root system architecture and relative water content, as well as gas exchange, across two H2O2 treatments in knockout mutants of A. thaliana. Results We could infer that PIP-type aquaporins are permeable to H2O2in planta and that this permeability is physiologically relevant in a plant’s response to oxidative stress. In particular, the lack of functional PIP2;3 confers resistance to exogenously applied H2O2 indicating that it facilitates H2O2 entry into root cells. Additionally, PIP1;1 and PIP2;6 were found to facilitate H2O2 diffusion, while PIP2;2 is required for proper root growth under controlled conditions. Main findings We conclude that PIPs are physiologically relevant conduits for H2O2 diffusion in the A. thaliana roots and participate in the regulation of stress responses.

Funder

Biotieteiden ja Ympäristön Tutkimuksen Toimikunta

Helsingin Yliopisto

Suomen Kulttuurirahasto

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3