Plant plasma membrane water channels conduct the signalling molecule H2O2

Author:

Dynowski Marek1,Schaaf Gabriel1,Loque Dominique1,Moran Oscar2,Ludewig Uwe1

Affiliation:

1. Zentrum für Molekularbiologie der Pflanzen (ZMBP), Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany

2. Istituto di Biofisica, CNR, Via De Marini, 6, I-16149, Genova, Italy

Abstract

H2O2 is a relatively long-lived reactive oxygen species that signals between cells and organisms. H2O2 signalling in plants is essential for response to stress, defence against pathogens and the regulation of programmed cell death. Although H2O2 diffusion across membranes is often considered as a passive property of lipid bilayers, native membranes represent significant barriers for H2O2. In the present study we addressed the question of whether channels might facilitate H2O2 conduction across plasma membranes. The expression of several plant plasma membrane aquaporins in yeast, including PIP2;1 from Arabidopsis (where PIP is plasma membrane intrinsic protein), enhanced the toxicity of H2O2 and increased the fluorescence of dye-loaded yeast when exposed to H2O2. The sensitivity of aquaporin-expressing yeast to H2O2 was altered by mutations that alter gating and the selectivity of the aquaporins. The conduction of water, H2O2 and urea was compared, using molecular dynamics simulations based on the crystal structure of SoPIP2;1 from spinach. The calculations identify differences in the conduction between the substrates and reveal channel residues critically involved in H2O2 conduction. The results of the calculations on tetramers and monomers are in agreement with the biochemical data. Taken together, the results strongly suggest that plasma membrane aquaporin pores determine the efficiency of H2O2 signalling between cells. Aquaporins are present in most species and their capacity to facilitate the diffusion of H2O2 may be of physiological significance in many organisms and particularly in communication between different species.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3