Abstract
Abstract
Background
Grafting with rootstocks is essential for the culture of many perennial fruit crops and is increasing being used in the production of annual fruits and vegetables. Our previous work based on microarrays showed that transcripts encoding enzymes of both primary and secondary metabolism were differentially expressed during graft union formation in both homo-grafts (a genotype grafted with itself) and hetero-grafts (two different genotypes grafted together). The aim of this study was to profile primary and secondary metabolites, and quantify the activity of phenylalanine ammonia lyase (PAL) and neutral invertase (NI) in the scion and rootstock tissues and the graft interface of homo and hetero-grafts of grapevine 1 month after grafting. Table-top grafting was done on over-wintering stems (canes) of grapevine and the graft interface tissues (containing some woody stem tissues and callus) were compared to the surrounding rootstock and scion tissues. The objective was to identify compounds involved in graft union formation and hetero-grafting responses.
Results
A total of 54 compounds from primary and secondary metabolism (19 amino acids, five primary and 30 secondary compounds metabolites) and the activity of two enzymes were measured. The graft interface was associated with an increase in the accumulation of the branched-chain amino acids, basic amino acids, certain stilbene compounds and higher PAL and NI activity in comparison to the surrounding woody stem tissues. Some amino acids and stilbenes were identified as being accumulated differently between the graft interfaces of the scion/rootstock combinations in a manner which was unrelated to their concentrations in the surrounding woody stem tissues.
Conclusions
This study revealed the modification of primary metabolism to support callus cell formation and the stimulation of stilbene synthesis at the graft interface, and how these processes are modified by hetero-grafting. Knowledge of the metabolites and/or enzymes required for successful graft union formation offer us the potential to identify markers that could be used by nurseries and researchers for selection and breeding purposes.
Funder
Agence Nationale de la Recherche
FranceAgriMer
Publisher
Springer Science and Business Media LLC
Reference58 articles.
1. Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP, von Wettberg EJB, Miller AJ. Rootstocks: Diversity, Domestication, and Impacts on Shoot Phenotypes. Trends Plant Sci. 2016;21(5):418–37.
2. Pina A, Cookson SJ, Calatayud A, Trinchera A, Errea P. Physiological and molecular mechanisms underlying graft compatibility. In: Colla G, Perez Alfocea F, Schwarz D, editors. Vegetable Grafting Principles and Practices. Wallingford: CABI; 2017.
3. Irisarri P, Binczycki P, Errea P, Martens HJ, Pina A. Oxidative stress associated with rootstock-scion interactions in pear/quince combinations during early stages of graft development. J Plant Physiol. 2015;176:25–35.
4. Cookson SJ, Moreno MJC, Hevin C, Mendome LZN, Delrot S, Magnin N, Trossat-Magnin C, Ollat N. Hetero-grafting with non-self rootstocks induces genes involved in stress responses at the graft interface when compared with auto-grafted controls. J Exp Bot. 2014;65(9):2473–81.
5. Melnyk CW, Gabel A, Hardcastle TJ, Robinson S, Miyashima S, Grosse I, Meyerowitz EM. Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. Proc Natl Acad Sci U S A. 2018;115(10):E2447–56.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献