Abstract
Abstract
Background
Elephant grass [Cenchrus purpureus (Schumach.) Morrone] is used for bioenergy and animal feed. In order to identify candidate genes that could be exploited for marker-assisted selection in elephant grass, this study aimed to investigate changes in predictive accuracy using genomic relationship information and simple sequence repeats for eight traits (height, green biomass, dry biomass, acid and neutral detergent fiber, lignin content, biomass digestibility, and dry matter concentration) linked to bioenergetics and animal feeding.
Results
We used single-step, genome-based best linear unbiased prediction and genome association methods to investigate changes in predictive accuracy and find candidate genes using genomic relationship information. Genetic variability (p < 0.05) was detected for most of the traits evaluated. In general, the overall means for the traits varied widely over the cuttings, which was corroborated by a significant genotype by cutting interaction. Knowing the genomic relationships increased the predictive accuracy of the biomass quality traits. We found that one marker (M28_161) was significantly associated with high values of biomass digestibility. The marker had moderate linkage disequilibrium with another marker (M35_202) that, in general, was detected in genotypes with low values of biomass digestibility. In silico analysis revealed that both markers have orthologous regions in other C4 grasses such as Setaria viridis, Panicum hallii, and Panicum virgatum, and these regions are located close to candidate genes involved in the biosynthesis of cell wall molecules (xyloglucan and lignin), which support their association with biomass digestibility.
Conclusions
The markers and candidate genes identified here are useful for breeding programs aimed at changing biomass digestibility in elephant grass. These markers can be used in marker-assisted selection to grow elephant grass cultivars for different uses, e.g., bioenergy production, bio-based products, co-products, bioactive compounds, and animal feed.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Publisher
Springer Science and Business Media LLC
Reference58 articles.
1. Negawo AT, Teshome A, Kumar A, Hanson J, Jones CS. Opportunities for Napier grass (Pennisetum purpureum) improvement using molecular genetics. Agronomy. 2017;7:28.
2. Fontoura CF, Brandão LE, Gomes LL. Elephant grass biorefineries: towards a cleaner Brazilian energy matrix? J Clean Prod. 2015;96:85–93.
3. Pereira AV, Lédo FJS, Morenz MJF, Leite JLB, Santos AMB, Martins CE, Machado JC. BRS Capiaçu: cultivar de capim-elefante de alto rendimento para produção de silagem. Juiz de Fora: Embrapa Gado de Leite; 2016. p. 1–6.
4. Chen XF, Huang C, Xiong L, Wang B, Qi GX, Lin XQ, Wang C, Chen XD. Use of elephant grass (Pennisetum purpureum) acid hydrolysate for microbial oil production by Trichosporon cutaneum. Prep Biochem Biotechnol. 2016;46:704–8.
5. Mambe FT, Voukeng IK, Beng VP, Kuete V. Antibacterial activities of methanol extracts of Alchornea cordifolia and four other Cameroonian plants against MDR phenotypes. J Taibah Univ Med Sci. 2016;11:121–7.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献