Involvement of cell cycle and ion transferring in the salt stress responses of alfalfa varieties at different development stages

Author:

Yin YanLing,Fan ShuGao,Li Shuang,Amombo Erick,Fu JinMin

Abstract

Abstract Background Alfalfa (Medicago sativa) is the worldwide major feed crop for livestock. However, forage quality and productivity are reduced by salt stress, which is a common issue in alfalfa-growing regions. The relative salt tolerance is changed during plant life cycle. This research aimed to investigate the relative salt tolerance and the underlying mechanisms of two alfalfa varieties at different developmental stages. Results Two alfalfa varieties, "Zhongmu No.1 (ZM1)" and "D4V", with varying salt tolerance, were subjected to salt stress (0, 100, 150 mM NaCl). When the germinated seeds were exposed to salt stress, D4V exhibited enhanced primary root growth compared to ZM1 due to the maintenance of meristem size, sustained or increased expression of cell cycle-related genes, greater activity of antioxidant enzymes and higher level of IAA. These findings indicated that D4V was more tolerant than ZM1 at early developmental stage. However, when young seedlings were exposed to salt stress, ZM1 displayed a lighter wilted phenotype and leaf cell death, higher biomass and nutritional quality, lower relative electrolytic leakage (EL) and malondialdehyde (MDA) concentration. In addition, ZM1 obtained a greater antioxidant capacity in leaves, indicated by less accumulation of hydrogen peroxide (H2O2) and higher activity of antioxidant enzymes. Further ionic tissue-distribution analysis identified that ZM1 accumulated less Na+ and more K+ in leaves and stems, resulting in lower Na+/K+ ratio, because of possessing higher expression of ion transporters and sensitivity of stomata closure. Therefore, the relative salt tolerance of ZM1 and D4V was reversed at young seedling stages, with the young seedlings of the former being more salt-tolerant. Conclusion Our data revealed the changes of relative order of salt tolerance between alfalfa varieties as they develop. Meristem activity in primary root tips and ion transferring at young seedling stages were underlying mechanisms that resulted in differences in salt tolerance at different developmental stages.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3