Characterization of grain carotenoids in global sorghum germplasm to guide genomics-assisted breeding strategies

Author:

Cruet-Burgos Clara,Morris Geoffrey P.,Rhodes Davina H.

Abstract

Abstract Background Crop biofortification is a successful strategy to ameliorate Vitamin A deficiency. Sorghum is a good candidate for vitamin A biofortification, as it is a staple food in regions with high prevalence of vitamin A deficiency. β-carotene—the main provitamin A carotenoid—is below the target concentration in sorghum grain, therefore biofortification breeding is required. Previous studies found evidence that sorghum carotenoid variation is oligogenic, suggesting that marker-assisted selection can be an appropriate biofortification method. However, we hypothesize that sorghum carotenoids have both oligogenic and polygenic components of variation. Genomics-assisted breeding could accelerate breeding efforts, but there exists knowledge gaps in the genetics underlying carotenoid variation, as well as appropriate germplasm to serve as donors. Results In this study, we characterized carotenoids in 446 accessions from the sorghum association panel and carotenoid panel using high-performance liquid chromatography, finding high carotenoid accessions not previously identified. Genome-wide association studies conducted with 345 accessions, confirmed that zeaxanthin epoxidase is a major gene underlying variation for not only zeaxanthin, but also lutein and β-carotene. High carotenoid lines were found to have limited genetic diversity, and originated predominantly from only one country. Potential novel genetic diversity for carotenoid content was identified through genomic predictions in 2,495 accessions of unexplored germplasm. Oligogenic variation of carotenoids was confirmed, as well as evidence for polygenic variation, suggesting both marker-assisted selection and genomic selection can facilitate breeding efforts. Conclusions Sorghum vitamin A biofortification could be beneficial for millions of people who rely on it as a dietary staple. Carotenoid content in sorghum is low, but high heritability suggests that increasing concentrations through breeding is possible. Low genetic diversity among high carotenoid lines might be the main limitation for breeding efforts, therefore further germplasm characterization is needed to assess the feasibility of biofortification breeding. Based on germplasm here evaluated, most countries’ germplasm lacks high carotenoid alleles, thus pre-breeding will be needed. A SNP marker within the zeaxanthin epoxidase gene was identified as a good candidate for use in marker-assisted selection. Due to the oligogenic and polygenic variation of sorghum grain carotenoids, both marker-assisted selection and genomic selection can be employed to accelerate breeding efforts.

Funder

Foundation for Food and Agriculture Research

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3