Identification of genetic loci associated with major agronomic traits of wheat (Triticum aestivum L.) based on genome-wide association analysis

Author:

Jung Woo Joo,Lee Yong Jin,Kang Chon-Sik,Seo Yong Weon

Abstract

Abstract Background Bread wheat (Triticum aestivum L.) is one of the most widely consumed cereal crops, but its complex genome makes it difficult to investigate the genetic effect on important agronomic traits. Genome-wide association (GWA) analysis is a useful method to identify genetic loci controlling complex phenotypic traits. With the RNA-sequencing based gene expression analysis, putative candidate genes governing important agronomic trait can be suggested and also molecular markers can be developed. Results We observed major quantitative agronomic traits of wheat; the winter survival rate (WSR), days to heading (DTH), days to maturity (DTM), stem length (SL), spike length (SPL), awn length (AL), liter weight (LW), thousand kernel weight (TKW), and the number of seeds per spike (SPS), of 287 wheat accessions from diverse country origins. A significant correlation was observed between the observed traits, and the wheat genotypes were divided into three subpopulations according to the population structure analysis. The best linear unbiased prediction (BLUP) values of the genotypic effect for each trait under different environments were predicted, and these were used for GWA analysis based on a mixed linear model (MLM). A total of 254 highly significant marker-trait associations (MTAs) were identified, and 28 candidate genes closely located to the significant markers were predicted by searching the wheat reference genome and RNAseq data. Further, it was shown that the phenotypic traits were significantly affected by the accumulation of favorable or unfavorable alleles. Conclusions From this study, newly identified MTA and putative agronomically useful genes will help to study molecular mechanism of each phenotypic trait. Further, the agronomically favorable alleles found in this study can be used to develop wheats with superior agronomic traits.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference71 articles.

1. International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345(6194):1251788.

2. Shewry PR. Wheat. J Exp Bot. 2009;60(6):1537–53. https://doi.org/10.1093/jxb/erp058.

3. Lee J, Chin JH, Ahn SN, Koh HJ. Brief history and perspectives on plant breeding. In: Current technologies in plant molecular breeding: Springer Netherlands; 2015. p. 1–14. https://doi.org/10.1007/978-94-017-9996-6.

4. United States Department of Agriculture National Agricultural Statistics Service. 2020;https://www.nass.usda.gov/. Accessed 12 Dec 2020.

5. Bibi S, Dahot MU, Khan IA, Khatri A, Naqvi M. Study of genetic diversity in wheat (Triticum aestivum L.) using random amplified polymorphic DNA (RAPD) markers. Pak J Bot. 2009;41:1023–7.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3