Full-length transcriptome sequencing reveals the molecular mechanism of potato seedlings responding to low-temperature

Author:

Yan Chongchong,Zhang Nan,Wang Qianqian,Fu Yuying,Zhao Hongyuan,Wang Jiajia,Wu Gang,Wang Feng,Li Xueyan,Liao Huajun

Abstract

Abstract Background Potato (Solanum tuberosum L.) is one of the world's most important crops, the cultivated potato is frost-sensitive, and low-temperature severely influences potato production. However, the mechanism by which potato responds to low-temperature stress is unclear. In this research, we apply a combination of second-generation sequencing and third-generation sequencing technologies to sequence full-length transcriptomes in low-temperature-sensitive cultivars to identify the important genes and main pathways related to low-temperature resistance. Results In this study, we obtained 41,016 high-quality transcripts, which included 15,189 putative new transcripts. Amongst them, we identified 11,665 open reading frames, 6085 simple sequence repeats out of the potato dataset. We used public available genomic contigs to analyze the gene features, simple sequence repeat, and alternative splicing event of 24,658 non-redundant transcript sequences, predicted the coding sequence and identified the alternative polyadenylation. We performed cluster analysis, GO, and KEGG functional analysis of 4518 genes that were differentially expressed between the different low-temperature treatments. We examined 36 transcription factor families and identified 542 transcription factors in the differentially expressed genes, and 64 transcription factors were found in the AP2 transcription factor family which was the most. We measured the malondialdehyde, soluble sugar, and proline contents and the expression genes changed associated with low temperature resistance in the low-temperature treated leaves. We also tentatively speculate that StLPIN10369.5 and StCDPK16 may play a central coordinating role in the response of potatoes to low temperature stress. Conclusions Overall, this study provided the first large-scale full-length transcriptome sequencing of potato and will facilitate structure–function genetic and comparative genomics studies of this important crop.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3