Abstract
Abstract
Background
Drought stress is one of the major factors limiting wheat production globally. Improving drought tolerance is important for agriculture sustainability. Although various morphological, physiological and biochemical responses associated with drought tolerance have been documented, the molecular mechanisms and regulatory genes that are needed to improve drought tolerance in crops require further investigation. We have used a novel 4-component version (for overexpression) and a 3-component version (for underexpression) of a barley stripe mosaic virus-based (BSMV) system for functional characterization of the C2H2-type zinc finger protein TaZFP1B in wheat. These expression systems avoid the need to produce transgenic plant lines and greatly speed up functional gene characterization.
Results
We show that overexpression of TaZFP1B stimulates plant growth and up-regulates different oxidative stress-responsive genes under well-watered conditions. Plants that overexpress TaZFP1B are more drought tolerant at critical periods of the plant’s life cycle. Furthermore, RNA-Seq analysis revealed that plants overexpressing TaZFP1B reprogram their transcriptome, resulting in physiological and physical modifications that help wheat to grow and survive under drought stress. In contrast, plants transformed to underexpress TaZFP1B are significantly less tolerant to drought and growth is negatively affected.
Conclusions
This study clearly shows that the two versions of the BSMV system can be used for fast and efficient functional characterization of genes in crops. The extent of transcriptome reprogramming in plants that overexpress TaZFP1B indicates that the encoded transcription factor is a key regulator of drought tolerance in wheat.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Reference140 articles.
1. FAO. Global agriculture towards 2050. Rome: FAO; 2009.
2. Valin H, Sands RD, van der Mensbrugghe D, Nelson GC, Ahammad H, Blanc E, Bodirsky B, Fujimori S, Hasegawa T, Havlik P, et al. The future of food demand: understanding differences in global economic models. Agric Econ. 2014;45(1):51–67.
3. Farooq M, Hussain M, Wahid A, Siddique KHM. Drought stress in plants: An overview. In: Plant Responses to Drought Stress. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 1–33.
4. Vicente-Serrano SM, Beguería S, Camarero JJ. Drought severity in a changing climate. In: Handbook of drought and water scarcity: CRC Press; Boca Raton, USA, 2017. p. 279–303.
5. Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–24.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献