Author:
Feng Shangguo,Zheng Kaixin,Jiao Kaili,Cai Yuchen,Chen Chuanlan,Mao Yanyan,Wang Lingyan,Zhan Xiaori,Ying Qicai,Wang Huizhong
Abstract
Abstract
Background
Physalis L. is a genus of herbaceous plants of the family Solanaceae, which has important medicinal, edible, and ornamental values. The morphological characteristics of Physalis species are similar, and it is difficult to rapidly and accurately distinguish them based only on morphological characteristics. At present, the species classification and phylogeny of Physalis are still controversial. In this study, the complete chloroplast (cp) genomes of four Physalis species (Physalis angulata, P. alkekengi var. franchetii, P. minima and P. pubescens) were sequenced, and the first comprehensive cp genome analysis of Physalis was performed, which included the previously published cp genome sequence of Physalis peruviana.
Results
The Physalis cp genomes exhibited typical quadripartite and circular structures, and were relatively conserved in their structure and gene synteny. However, the Physalis cp genomes showed obvious variations at four regional boundaries, especially those of the inverted repeat and the large single-copy regions. The cp genomes’ lengths ranged from 156,578 bp to 157,007 bp. A total of 114 different genes, 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes, were observed in four new sequenced Physalis cp genomes. Differences in repeat sequences and simple sequence repeats were detected among the Physalis cp genomes. Phylogenetic relationships among 36 species of 11 genera of Solanaceae based on their cp genomes placed Physalis in the middle and upper part of the phylogenetic tree, with a monophyletic evolution having a 100% bootstrap value.
Conclusion
Our results enrich the data on the cp genomes of the genus Physalis. The availability of these cp genomes will provide abundant information for further species identification, increase the taxonomic and phylogenetic resolution of Physalis, and assist in the investigation and utilization of Physalis plants.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Hangzhou Scientific and Technological Program of China
Key project at central government level: The ability establishment of sustainable use for valuable Chinese medicine resources
Zhejiang Provincial Key Research & Development Project Grants
the college students' science and technology innovation project of Zhejiang
Publisher
Springer Science and Business Media LLC
Reference68 articles.
1. Whitson M, Manos PS. Untangling Physalis (Solanaceae) from the Physaloids: a two-gene phylogeny of the Physalinae. Syst Bot. 2005;30(1):216–30.
2. Zhang WN, Tong WY. Chemical constituents and biological activities of plants from the genus Physalis. Chem Biodivers. 2016;13(1):48–65.
3. Feng SG, Jiang MY, Shi YJ, Jiao KL, Shen CJ, Lu JJ, Ying QC, Wang HZ. Application of the ribosomal DNA ITS2 region of Physalis (Solanaceae): DNA barcoding and phylogenetic study. Front Plant Sci. 2016;7:1047.
4. Wei JL, Hu XR, Yang JJ, Yang WC. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers. PLoS One. 2012;7(11):e50164.
5. Martinez M. Revision of Physalis section Epeteiorhiza (Solanaceae). Ann Ins Biol Bot. 1998;69:71–117.
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献