Abstract
Abstract
Background
It is well known that seed vigor is essential for agricultural production and rice (Oryza sativa L.) is one of the most important crops in the world. Though we previously reported that miR164c regulates rice seed vigor, but whether and how other miRNAs cooperate with miR164c to regulate seed vigor is still unknown.
Results
Based on degradome data of six RNA samples isolated from seeds of the wild-type (WT) indica rice cultivar ‘Kasalath’ as well as two modified lines in ‘Kasalath’ background (miR164c-silenced line [MIM164c] and miR164c overexpression line [OE164c]), which were subjected to either no aging treatment or an 8-day artificial aging treatment, 1247 different target transcripts potentially cleaved by 421 miRNAs were identified. The miRNA target genes were functionally annotated via GO and KEGG enrichment analyses. By STRING database assay, a miRNA-mediated gene interaction network regulating seed vigor in rice was revealed, which comprised at least four interconnected pathways: the miR5075-mediated oxidoreductase related pathway, the plant hormone related pathway, the miR164e related pathway, and the previously reported RPS27AA related pathway. Knockout and overexpression of the target gene Os02g0817500 of miR5075 decreased and enhanced seed vigor, respectively. By Y2H assay, the proteins encoded by five seed vigor-related genes, Os08g0295100, Os07g0633100, REFA1, OsPER1 and OsGAPC3, were identified to interact with Os02g0817500.
Conclusions
miRNAs cooperate to regulate seed vigor in rice via an integrative gene interaction network comprising miRNA target genes and other functional genes. The result provided a basis for fully understanding the molecular mechanisms of seed vigor regulation.
Funder
National Natural Science Foundation of China
Construct Program of the Key Discipline in Hunan Province
Hunan Provincial Cooperative Innovation Center of Engineering and New Products for Developmental Biology
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献