Character changes and Transcriptomic analysis of a cassava sexual Tetraploid

Author:

Chen Xia,Lai Hanggui,Li Ruimei,Yao Yuan,Liu Jiao,Yuan Shuai,Fu Shaoping,Hu Xinwen,Guo Jianchun

Abstract

Abstract Background Cassava (Manihot esculenta Crantz) is an important food crop known for its high starch content. Polyploid breeding is effective in its genetic improvement, and use of 2n gametes in sexual polyploid breeding is one of the potential methods for cassava breeding and improvement. In our study, the cassava sexual tetraploid (ST), which carries numerous valuable traits, was successfully generated by hybridizing 2n female gametes SC5 (♀) and 2n male gametes SC10 (♂). However, the molecular mechanisms remain unclear. To understand these underlying molecular mechanisms behind the phenotypic alterations and heterosis in ST plants, we investigated the differences in gene expression between polyploids and diploids by determining the transcriptomes of the ST plant and its parents during the tuber root enlargement period. We also compared the characters and transcriptomes of the ST plant with its parents. Results The ST plant was superior in plant height, stem diameter, leaf area, petiole length, plant weight, and root weight than the parent plants, except the leaf number, which was lower. The number of starch granules was higher in the roots of ST plants than those in the parent plants after five months (tuber root enlargement period), which could be due to a higher leaf net photosynthetic rate leading to early filling of starch granules. Based on transcriptome analysis, we identified 2934 and 3171 differentially expressed genes (DEGs) in the ST plant as compared to its female and male parents, respectively. Pathway enrichment analyses revealed that flavonoid biosynthesis and glycolysis/gluconeogenesis were significantly enriched in the ST plants, which might contribute to the colors of petiole (purple-red), root epidermis (dark brown), and tuber starch accumulation, respectively. Conclusions After sexual polyploidization, the phenotype of ST has changed significantly in comparison to their diploid parents, mainly manifest as enlarged biomass, yield, early starch filling, deep colored petiole and root epidermis. The tetraploid plants were also mature early due to early starch grain filling. Owing to enriched flavonoid biosynthesis and glycolysis/gluconeogenesis, they are possibly resistant to adversity stresses and provide better yield, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference70 articles.

1. Lebot V, Atherton J, Rees A. Tropical root and tuber crops: cassava, sweet potato, yams and aroids: CABI; 2008.

2. Nma N, Ortiz R. Cassava improvement: challenges and impacts. J Agric Sci. 2007;145(145):163–71.

3. Feng X, M-R XU, Zhang L, Li N-H. A literature review on cassava-biofuels industrialization. Chinese Agricultural Sci Bull. 2010;26(10):375–80.

4. Lai H-G, Zhuang N-S. Advances in research on cassava polyploid breeding. J Tropical Organisms. 2010;01(4):380–5.

5. Ye J-Q. Progress of cassava breeding in China. Tropical Agricultural Sci. 2009;11:115–9.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3