Author:
Chen Xia,Lai Hanggui,Li Ruimei,Yao Yuan,Liu Jiao,Yuan Shuai,Fu Shaoping,Hu Xinwen,Guo Jianchun
Abstract
Abstract
Background
Cassava (Manihot esculenta Crantz) is an important food crop known for its high starch content. Polyploid breeding is effective in its genetic improvement, and use of 2n gametes in sexual polyploid breeding is one of the potential methods for cassava breeding and improvement. In our study, the cassava sexual tetraploid (ST), which carries numerous valuable traits, was successfully generated by hybridizing 2n female gametes SC5 (♀) and 2n male gametes SC10 (♂). However, the molecular mechanisms remain unclear. To understand these underlying molecular mechanisms behind the phenotypic alterations and heterosis in ST plants, we investigated the differences in gene expression between polyploids and diploids by determining the transcriptomes of the ST plant and its parents during the tuber root enlargement period. We also compared the characters and transcriptomes of the ST plant with its parents.
Results
The ST plant was superior in plant height, stem diameter, leaf area, petiole length, plant weight, and root weight than the parent plants, except the leaf number, which was lower. The number of starch granules was higher in the roots of ST plants than those in the parent plants after five months (tuber root enlargement period), which could be due to a higher leaf net photosynthetic rate leading to early filling of starch granules. Based on transcriptome analysis, we identified 2934 and 3171 differentially expressed genes (DEGs) in the ST plant as compared to its female and male parents, respectively. Pathway enrichment analyses revealed that flavonoid biosynthesis and glycolysis/gluconeogenesis were significantly enriched in the ST plants, which might contribute to the colors of petiole (purple-red), root epidermis (dark brown), and tuber starch accumulation, respectively.
Conclusions
After sexual polyploidization, the phenotype of ST has changed significantly in comparison to their diploid parents, mainly manifest as enlarged biomass, yield, early starch filling, deep colored petiole and root epidermis. The tetraploid plants were also mature early due to early starch grain filling. Owing to enriched flavonoid biosynthesis and glycolysis/gluconeogenesis, they are possibly resistant to adversity stresses and provide better yield, respectively.
Publisher
Springer Science and Business Media LLC
Reference70 articles.
1. Lebot V, Atherton J, Rees A. Tropical root and tuber crops: cassava, sweet potato, yams and aroids: CABI; 2008.
2. Nma N, Ortiz R. Cassava improvement: challenges and impacts. J Agric Sci. 2007;145(145):163–71.
3. Feng X, M-R XU, Zhang L, Li N-H. A literature review on cassava-biofuels industrialization. Chinese Agricultural Sci Bull. 2010;26(10):375–80.
4. Lai H-G, Zhuang N-S. Advances in research on cassava polyploid breeding. J Tropical Organisms. 2010;01(4):380–5.
5. Ye J-Q. Progress of cassava breeding in China. Tropical Agricultural Sci. 2009;11:115–9.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献