Integrated Characterization of Cassava (Manihot esculenta) Pectin Methylesterase (MePME) Genes to Filter Candidate Gene Responses to Multiple Abiotic Stresses

Author:

Wang Shijia12,Li Ruimei123ORCID,Zhou Yangjiao12,Fernie Alisdair R.3,Ding Zhongping12,Zhou Qin12,Che Yannian12,Yao Yuan2,Liu Jiao2,Wang Yajie2,Hu Xinwen14,Guo Jianchun12

Affiliation:

1. College of Life Sciences, Hainan University, Haikou 570228, China

2. Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

3. Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany

4. College of Chemical and Materials Engineering, Hainan Vocational University of Science and Technology, Haikou 571126, China

Abstract

Plant pectin methylesterases (PMEs) play crucial roles in regulating cell wall modification and response to various stresses. Members of the PME family have been found in several crops, but there is a lack of research into their presence in cassava (Manihot esculent), which is an important crop for world food security. In this research, 89 MePME genes were identified in cassava that were separated into two types (type-Ⅰ and type-Ⅱ) according to the existence or absence of a pro-region (PMEI domain). The MePME gene members were unevenly located on 17 chromosomes, with 19 gene pairs being identified that most likely arose via duplication events. The MePMEs could be divided into ten sub-groups in type-Ⅰ and five sub-groups in type-Ⅱ. The motif analysis revealed 11 conserved motifs in type-Ⅰ and 8 in type-Ⅱ MePMEs. The number of introns in the CDS region of type-Ⅰ MePMEs ranged between one and two, and the number of introns in type-Ⅱ MePMEs ranged between one and nine. There were 21 type-Ⅰ and 31 type-Ⅱ MePMEs that contained signal peptides. Most of the type-Ⅰ MePMEs had two conserved “RK/RLL” and one “FPSWVS” domain between the pro-region and the PME domain. Multiple stress-, hormone- and tissue-specific-related cis-acting regulatory elements were identified in the promoter regions of MePME genes. A total of five co-expressed genes (MePME1, MePME2, MePME27, MePME65 and MePME82) were filtered from different abiotic stresses via the use of UpSet Venn diagrams. The gene expression pattern analysis revealed that the expression of MePME1 was positively correlated with the degree of cassava postharvest physiological deterioration (PPD). The expression of this gene was also significantly upregulated by 7% PEG and 14 °C low-temperature stress, but slightly downregulated by ABA treatment. The tissue-specific expression analysis revealed that MePME1 and MePME65 generally displayed higher expression levels in most tissues than the other co-expressed genes. In this study, we obtain an in-depth understanding of the cassava PME gene family, suggesting that MePME1 could be a candidate gene associated with multiple abiotic tolerance.

Funder

National Natural Science Foundation of China

Provincial Natural Fund of Hainan Province

Earmarked Fund for China Agriculture Research System

Major Science and Technology plan of Hainan Province

State Scholarship Fund of China Scholarship Council

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3