Analyses of the photosynthetic characteristics, chloroplast ultrastructure, and transcriptome of apple (Malus domestica) grown under red and blue lights

Author:

Li Zhiqiang,Chen Qiaojing,Xin Youyan,Mei Zhuoxin,Gao Aiyun,Liu Wenjun,Yu Lei,Chen Xuesen,Chen Zijing,Wang Nan

Abstract

Abstract Background Light quality significantly affects plant growth and development, photosynthesis, and carbon and nitrogen metabolism. Apple (Malus domestica Borkh.) is a widely cultivated and economically important fruit crop worldwide. However, there are still few studies on the effects of different light qualities on the growth and development of apple seedlings. Results In this study, we explored the effects of blue and red light treatments on the growth and development, photosynthetic characteristics, leaf chloroplast ultrastructure, and carbon and nitrogen metabolism of apple seedlings. Blue light significantly inhibited apple plant growth and leaf extension, but it promoted the development of leaf tissue structures and chloroplasts and positively affected leaf stomatal conductance, the transpiration rate, and photosynthetic efficiency. The red light treatment promoted apple plant growth and root development, but it resulted in loosely organized leaf palisade tissues and low chlorophyll contents. The blue and red light treatments enhanced the accumulation of ammonium nitrogen in apple seedlings. Moreover, the blue light treatment significantly promoted nitrogen metabolism. Additionally, an RNA-seq analysis revealed that both blue light and red light can significantly up-regulate the expression of genes related to carbon and nitrogen metabolism. Blue light can also promote amino acid synthesis and flavonoid metabolism, whereas red light can induce plant hormone signal transduction. The expression of a gene encoding a bHLH transcription factor (MYC2-like) was significantly up-regulated in response to blue light, implying it may be important for blue light-mediated plant development. Conclusions Considered together, blue and red light have important effects on apple growth, carbon and nitrogen metabolism. These findings may be useful for determining the ideal light conditions for apple cultivation to maximize fruit yield and quality.

Funder

National Key Research and Development Program of China

Agricultural Variety Improvement Project of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3