New insights into the occurrence of continuous cropping obstacles in pea (Pisum sativum L.) from soil bacterial communities, root metabolism and gene transcription

Author:

Ma Lei,Ma Shaoying,Chen Guiping,Lu Xu,Wei Ruonan,Xu Ling,Feng Xiaojie,Yang Xiaoming,Chai Qiang,Zhang Xucheng,Li Sheng

Abstract

Abstract Background Continuous cropping is a significant obstacle to sustainable development in the pea (Pisum sativum L.) industry, but the underlying mechanisms of this remain unclear. In this study, we used 16 S rDNA sequencing, transcriptomics, and metabolomics to analyze the response mechanism of roots and soil bacteria to continuous cropping and the relationship between soil bacteria and root phenotypes of different pea genotypes (Ding wan 10 and Yun wan 8). Results Continuous cropping inhibited pea growth, with a greater effect on Ding wan 10 than Yun wan 8. Metabolomics showed that the number of differentially accumulated metabolites (DAMs) in pea roots increased with the number of continuous cropping, and more metabolic pathways were involved. Transcriptomics revealed that the number of differentially expressed genes (DEGs) increased with the number of continuous cropping. Continuous cropping altered the expression of genes involved in plant-pathogen interaction, MAPK signal transduction, and lignin synthesis pathways in pea roots, with more DEGs in Ding wan 10 than in Yun wan 8. The up-regulated expression of genes in the ethylene signal transduction pathway was evident in Ding wan 10. Soil bacterial diversity did not change, but the relative abundance of bacteria significantly responded to continuous cropping. Integrative analysis showed that the bacteria with significant relative abundance in the soil were strongly associated with the antioxidant synthesis and linoleic acid metabolism pathway of pea roots under continuous cropping once. Under continuous cropping twice, the bacteria with significant relative abundance changes were strongly associated with cysteine and methionine metabolism, fatty acid metabolism, phenylpropanoid biosynthesis, terpenoid backbone biosynthesis, linoleic acid, and amino sugar and nucleotide sugar metabolism. Conclusion Ding wan 10 was more sensitive to continuous cropping than Yun wan 8. Continuous cropping times and pea genotypes determined the differences in root metabolic pathways. There were common metabolic pathways in the two pea genotypes in response to continuous cropping, and the DEGs and DAMs in these metabolic pathways were strongly associated with the bacteria with significant changes in relative abundance in the soil. This study provides new insights into obstacles to continuous cropping in peas.

Funder

Natural Science Fund Project of Gansu Province

China Agriculture Research System of MOF and MARA-Food Legumes

National Natural Science Foundation of China

National Green Fertilizer Industry Technology System

National Science Fund

Major special project in Gansu Province

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3