Sucrose-phosphate phosphatase from sugarcane reveals an ancestral tandem duplication

Author:

Partida Vania Gabriela Sedano,Dias Henrique Moura,Corcino Diana Susana Martinez,Van Sluys Marie-AnneORCID

Abstract

Abstract Background Sugarcane is capable to store large amounts of sucrose in the culm at maturity hence it became a major source of sucrose for the food and the renewable energy industries. Sucrose, the main disaccharide produced by photosynthesis, is mainly stored in the vacuole of the cells of non-photosynthetic tissues. Two pathways are known to release free sucrose in plant cells, one is de novo synthesis dependent on sucrose phosphate synthase (SPS) and sucrose phosphate phosphatase (S6PP) while the other is regulatory and dependent on sucrose synthase (SuSy) activity. The molecular understanding of genes that give rise to the expression of the enzyme sucrose phosphate phosphatase, responsible for the release of sucrose in the last synthetic step lag behind the regulatory SuSy gene. Results Sugarcane genome sequencing effort disclosed the existence of a tandem duplication and the present work further support that both S6PP.1 and S6PP_2D isoforms are actively transcribed in young sugarcane plants but significantly less at maturity. Two commercial hybrids (SP80–3280 and R570) and both Saccharum spontaneum (IN84–58) and S.officinarum (BADILLA) exhibit transcriptional activity at three-month-old plants of the tandem S6PP_2D in leaves, culm, meristem and root system with a cultivar-specific distribution. Moreover, this tandem duplication is shared with other grasses and is ancestral in the group. Conclusion Detection of a new isoform of S6PP resulting from the translation of 14 exon-containing transcript (S6PP_2D) will contribute to the knowledge of sucrose metabolism in plants. In addition, expression varies along plant development and between sugarcane cultivars and parental species.

Funder

FAPESP

CAPES

CNPq

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference41 articles.

1. Souza GM, Victoria RL, Verdade LM, et al. Chapter 2: bioenergy numbers. In: Souza GM, Victoria RL, Joly CA, Verdade LM, editors. Bioenergy & sustainability: bridging the gaps. 1st ed. Paris: SCOPE. ISBN 978–2–9545557-0-6; 2015. p. 29–57.

2. Lorimer GH, Buchanan BB, Wolosiuk RA. Photosynthesis: the carbon reactions. In: Taiz L, Zeiger E, editors. Plant physiology. 5th ed. Massachusetts: United States of America; 2010. p. 199–242.

3. Smith AM, Coupland G, Dolan L, Harberd N, Jones J, Martin C, Sablowski R, Amey A. Plant biology. 1st ed. New York: CRC Press; ISBN 9780815340256; 2009.

4. Kalt-Torres W, Kerr PS, Usuda H, Huber SC. Diurnal changes in maize leaf photosynthesis: I. Carbon exchange rate, assimilate export rate, and enzyme activities. Plant Physiol. 1987;83:283–8.

5. Ainsworth EA, Bush DR. Carbohydrate export from the leaf: a highly regulated process and target to enhance photosynthesis and productivity. Plant Physiol. 2011;155:64–9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3