Carbon Dots and Single-walled Carbon Nanotubes Enhances Maize Shading Stress Tolerance

Author:

Khan Mohammad Nauman,Ali Waqar,Grillo Renato,Wu Honghong,Nie Lixiao

Abstract

AbstractLow sunlight availability/shading stress is one of the major abiotic stresses, limiting plant photosynthesis and biomass production. Maize is a C4 species and requires more sunshine for efficient photosynthesis rate. Thus, maize is a highly shade-sensitive species. We used carbon dots (CDs) and single-walled carbon nanotubes (SWCNTs) as a foliar application to enhance maize photosynthesis under no-shading and shading stress. The results revealed that under shading stress, the higher concentration of CDs and SWCNTs reduced the MDA (Malondialdehyde) content and increased the expression level of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) genes. Moreover, under shading stress, CDs and SWCNTs increased the average thickness of leaf lamina, vascular bundle, mesophyll, and epidermis. CDs and SWCNTs reduced the damaging effects of shading stress on the chloroplast (Ch) formation. CDs and SWCNTs upregulated Rubisco and related genes under shading stress. The chlorophyll fluorescence parameters, including the efficiency of quantum yield of photosystem II (Fv/Fm), electron transport rate (ETR), non-photochemical quenching coefficient (NPQ), and photochemical quenching coefficient (qP) were improved with the foliar application of CDs and SWCNTs under shading stress. Higher stomatal conductance, intercellular CO2concentration, transpiration, and net photosynthesis were observed in maize plants treated with CDs and SWCNTs under shading stress. The results of our study suggest that using higher concentrations of CDs and SWCNTs can enhance plant growth and photosynthesis under shading stress conditions. However, to avoid nanotoxicity, great care is recommended when selecting different concentrations of nanomaterials based on the growing conditions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3