Author:
Chevilly Sergio,Dolz-Edo Laura,Morcillo Luna,Vilagrosa Alberto,López-Nicolás José Manuel,Yenush Lynne,Mulet José M.
Abstract
Abstract
Background
Salt stress is one of the main constraints determining crop productivity, and therefore one of the main limitations for food production. The aim of this study was to characterize the salt stress response at the physiological and molecular level of different Broccoli (Brassica oleracea L. var. Italica Plenck) cultivars that were previously characterized in field and greenhouse trials as salt sensitive or salt tolerant. This study aimed to identify functional and molecular traits capable of predicting the ability of uncharacterized lines to cope with salt stress. For this purpose, this study measured different physiological parameters, hormones and metabolites under control and salt stress conditions.
Results
This study found significant differences among cultivars for stomatal conductance, transpiration, methionine, proline, threonine, abscisic acid, jasmonic acid and indolacetic acid. Salt tolerant cultivars were shown to accumulate less sodium and potassium in leaves and have a lower sodium to potassium ratio under salt stress. Analysis of primary metabolites indicated that salt tolerant cultivars have higher concentrations of several intermediates of the Krebs cycle and the substrates of some anaplerotic reactions.
Conclusions
This study has found that the energetic status of the plant, the sodium extrusion and the proline content are the limiting factors for broccoli tolerance to salt stress. Our results establish physiological and molecular traits useful as distinctive markers to predict salt tolerance in Broccoli or to design novel biotechnological or breeding strategies for improving broccoli tolerance to salt stress.
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Bisbis MB, Gruda N, Blanke M. Potential impacts of climate change on vegetable production and product quality – A review. J Clean Prod. 2018;170:1602–20. https://doi.org/10.1016/j.jclepro.2017.09.224.
2. Van Passel S, Massetti E, Mendelsohn R. A Ricardian analysis of the impact of climate change on European Agriculture. Environ Resour Econ. 2017;67:725–60. https://doi.org/10.1007/s10640-016-0001-y.
3. IPCC. Climate Change and Land Ice; IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems; Summary for Policymakers. 2017.
4. Tripathi A, Tripathi DK, Chauhan DK, Kumar N, Singh GS. Paradigms of climate change impacts on some major food sources of the world: A review on current knowledge and future prospects. Agric Ecosyst Environ. 2016;216:356–73. https://doi.org/10.1016/j.agee.2015.09.034.
5. Flowers TJ, Colmer TD. Salinity tolerance in halophytes*. New Phytol. 2008;179:945–63. https://doi.org/10.1111/j.1469-8137.2008.02531.x.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献