Optimization of salicylic acid and chitosan treatment for bitter secoiridoid and xanthone glycosides production in shoot cultures of Swertia paniculata using response surface methodology and artificial neural network

Author:

Kaur Prabhjot,Gupta R. C.,Dey Abhijit,Malik TabarakORCID,Pandey Devendra Kumar

Abstract

Abstract Background In this study, response surface methodology (RSM) and artificial neural network (ANN) was used to construct the predicted models of linear, quadratic and interactive effects of two independent variables viz. salicylic acid (SA) and chitosan (CS) for the production of amarogentin (I), swertiamarin (II) and mangiferin (III) from shoot cultures of Swertia paniculata Wall. These compounds are the major therapeutic metabolites in the Swertia plant, which have significant role and demand in the pharmaceutical industries. Results Present study highlighted that different concentrations of SA and CS elicitors substantially influenced the % yield of (I), (II) and (III) compounds in the shoot culture established on modified ½ MS medium (supplemented with 2.22 mM each of BA and KN and 2.54 mM NAA). In RSM, different response variables with linear, quadratic and 2 way interaction model were computed with five-factor-three level full factorial CCD. In ANN modelling, 13 runs of CCD matrix was divided into 3 subsets, with approximate 8:1:1 ratios to train, validate and test. The optimal enhancement of (I) (0.435%), (II) (4.987%) and (III) (4.357%) production was achieved in 14 days treatment in shoot cultures of S. paniculata elicited by 9 mM and 12 mg L− 1 concentrations (SA) and (CS). Conclusions In optimization study, (I) show 0.170–0.435%; (II) display 1.020–4.987% and (III) upto 2.550–4.357% disparity with varied range of SA (1–20 mM) and CS (1–20 mg L− 1). Overall, optimization of elicitors to promote secoiridoid and xanthone glycoside production with ANN modeling (r2 = 100%) offered more significant results as compared to RSM (r2 = 99.8%). Graphical abstract

Funder

Department of Biotechnology , Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3