Abstract
Abstract
Background
In this study, response surface methodology (RSM) and artificial neural network (ANN) was used to construct the predicted models of linear, quadratic and interactive effects of two independent variables viz. salicylic acid (SA) and chitosan (CS) for the production of amarogentin (I), swertiamarin (II) and mangiferin (III) from shoot cultures of Swertia paniculata Wall. These compounds are the major therapeutic metabolites in the Swertia plant, which have significant role and demand in the pharmaceutical industries.
Results
Present study highlighted that different concentrations of SA and CS elicitors substantially influenced the % yield of (I), (II) and (III) compounds in the shoot culture established on modified ½ MS medium (supplemented with 2.22 mM each of BA and KN and 2.54 mM NAA). In RSM, different response variables with linear, quadratic and 2 way interaction model were computed with five-factor-three level full factorial CCD. In ANN modelling, 13 runs of CCD matrix was divided into 3 subsets, with approximate 8:1:1 ratios to train, validate and test. The optimal enhancement of (I) (0.435%), (II) (4.987%) and (III) (4.357%) production was achieved in 14 days treatment in shoot cultures of S. paniculata elicited by 9 mM and 12 mg L− 1 concentrations (SA) and (CS).
Conclusions
In optimization study, (I) show 0.170–0.435%; (II) display 1.020–4.987% and (III) upto 2.550–4.357% disparity with varied range of SA (1–20 mM) and CS (1–20 mg L− 1). Overall, optimization of elicitors to promote secoiridoid and xanthone glycoside production with ANN modeling (r2 = 100%) offered more significant results as compared to RSM (r2 = 99.8%).
Graphical abstract
Funder
Department of Biotechnology , Ministry of Science and Technology
Publisher
Springer Science and Business Media LLC
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献