Comparative proteomic analysis reveals that exogenous 6-benzyladenine (6-BA) improves the defense system activity of waterlogged summer maize

Author:

Hu Juan,Ren Baizhao,Dong Shuting,Liu Peng,Zhao Bin,Zhang JiwangORCID

Abstract

Abstract Background Exogenous 6-benzyladenine (6-BA) could improve leaf defense system activity. In order to better understand the regulation mechanism of exogenous 6-benzyladenine (6-BA) on waterlogged summer maize, three treatments including control (CK), waterlogging at the third leaf stage for 6 days (V3–6), and application of 100 mg dm− 3 6-BA after waterlogging for 6 days (V3–6-B), were employed using summer maize hybrid DengHai 605 (DH605) as the experimental material. We used a labeling liquid chromatography-based quantitative proteomics approach with tandem mass tags to determine the changes in leaf protein abundance level at the tasseling stage. Results Waterlogging significantly hindered plant growth and decreased the activities of SOD, POD and CAT. In addition, the activity of LOX was significantly increased after waterlogging. As a result, the content of MDA and H2O2 was significantly increased which incurred serious damages on cell membrane and cellular metabolism of summer maize. And, the leaf emergence rate, plant height and grain yield were significantly decreased by waterlogging. However, application of 6-BA effectively mitigated these adverse effects induced by waterlogging. Compared with V3–6, SOD, POD and CAT activity of V3–6-B were increased by 6.9, 12.4, and 18.5%, LOX were decreased by 13.6%. As a consequence, the contents of MDA and H2O2 in V3–6-B were decreased by 22.1 and 17.2%, respectively, compared to that of V3–6. In addition, the leaf emergence rate, plant height and grain yield were significantly increased by application of 6-BA. Based on proteomics profiling, the proteins involved in protein metabolism, ROS scavenging and fatty acid metabolism were significantly regulated by 6-BA, which suggested that application of 6-BA exaggerated the defensive response of summer maize at proteomic level. Conclusions These results demonstrated that 6-BA had contrastive effects on waterlogged summer maize. By regulating key proteins related to ROS scavenging and fatty acid metabolism, 6-BA effectively increased the defense system activity of waterlogged summer maize, then balanced the protein metabolism and improved the plant physiological traits and grain yield.

Funder

National Nature Science Funds

National Modern Agricultural Technology & Industry System

“Double Tops” Program Funds

National Basic Research Program of China (973 Program) (CN)National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference82 articles.

1. Solomon S, Qin DH, Manning M, Chen Z, Marquis M, Tignor M, Averyt KB. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Summary for policymakers. Intergov Panel Climate Change Climate Change. 2007;18:95–123.

2. Liu JF, Wang JH, Jiao MH, Zhang RG. Response of water resources in the yellow river basin to global climate change. Arid Zone Res. 2011;28:860–5.

3. Edenhofer O, Seyboth K. Intergovernmental panel on climate change (IPCC). Encyclopedia Energy Nat Res Environ Econ. 2013;26:48–56.

4. Lal R. Soil carbon sequestration to mitigate climate change. Geoderma. 2004;123:0–22.

5. Qin XS, Lu Y. Study of climate change impact on flood frequencies: a combined weather generator and hydrological modeling approach. J Hydrometeorol. 2014;15:1205–19.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3