Abstract
Abstract
Background
Exogenous 6-benzyladenine (6-BA) could improve leaf defense system activity. In order to better understand the regulation mechanism of exogenous 6-benzyladenine (6-BA) on waterlogged summer maize, three treatments including control (CK), waterlogging at the third leaf stage for 6 days (V3–6), and application of 100 mg dm− 3 6-BA after waterlogging for 6 days (V3–6-B), were employed using summer maize hybrid DengHai 605 (DH605) as the experimental material. We used a labeling liquid chromatography-based quantitative proteomics approach with tandem mass tags to determine the changes in leaf protein abundance level at the tasseling stage.
Results
Waterlogging significantly hindered plant growth and decreased the activities of SOD, POD and CAT. In addition, the activity of LOX was significantly increased after waterlogging. As a result, the content of MDA and H2O2 was significantly increased which incurred serious damages on cell membrane and cellular metabolism of summer maize. And, the leaf emergence rate, plant height and grain yield were significantly decreased by waterlogging. However, application of 6-BA effectively mitigated these adverse effects induced by waterlogging. Compared with V3–6, SOD, POD and CAT activity of V3–6-B were increased by 6.9, 12.4, and 18.5%, LOX were decreased by 13.6%. As a consequence, the contents of MDA and H2O2 in V3–6-B were decreased by 22.1 and 17.2%, respectively, compared to that of V3–6. In addition, the leaf emergence rate, plant height and grain yield were significantly increased by application of 6-BA. Based on proteomics profiling, the proteins involved in protein metabolism, ROS scavenging and fatty acid metabolism were significantly regulated by 6-BA, which suggested that application of 6-BA exaggerated the defensive response of summer maize at proteomic level.
Conclusions
These results demonstrated that 6-BA had contrastive effects on waterlogged summer maize. By regulating key proteins related to ROS scavenging and fatty acid metabolism, 6-BA effectively increased the defense system activity of waterlogged summer maize, then balanced the protein metabolism and improved the plant physiological traits and grain yield.
Funder
National Nature Science Funds
National Modern Agricultural Technology & Industry System
“Double Tops” Program Funds
National Basic Research Program of China (973 Program) (CN)National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Reference82 articles.
1. Solomon S, Qin DH, Manning M, Chen Z, Marquis M, Tignor M, Averyt KB. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Summary for policymakers. Intergov Panel Climate Change Climate Change. 2007;18:95–123.
2. Liu JF, Wang JH, Jiao MH, Zhang RG. Response of water resources in the yellow river basin to global climate change. Arid Zone Res. 2011;28:860–5.
3. Edenhofer O, Seyboth K. Intergovernmental panel on climate change (IPCC). Encyclopedia Energy Nat Res Environ Econ. 2013;26:48–56.
4. Lal R. Soil carbon sequestration to mitigate climate change. Geoderma. 2004;123:0–22.
5. Qin XS, Lu Y. Study of climate change impact on flood frequencies: a combined weather generator and hydrological modeling approach. J Hydrometeorol. 2014;15:1205–19.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献