6-BA Reduced Yield Loss under Waterlogging Stress by Regulating the Phenylpropanoid Pathway in Wheat

Author:

Gulzar Faiza1,Yang Hongkun1ORCID,Chen Jiabo1,Hassan Beenish2,Huang Xiulan3,Qiong Fangao134

Affiliation:

1. State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, China

2. Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China

3. Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China

4. Key Laboratory of Crop Ecophysiology & Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China

Abstract

Waterlogging stress causes substantial destruction to plant growth and production under climatic fluctuations globally. Plants hormones have been widely explored in numerous crops, displaying an imperative role in crop defense and growth mechanism. However, there is a paucity of research on the subject of plant hormones regulating waterlogging stress responses in wheat crop. In this study, we clarified the role of 6-BA in waterlogging stress through inducing phenylpropanoid biosynthesis in wheat. The application of 6-BA (6-benzyladenine) enhanced the growth and development of wheat plants under waterlogging stress, which was accompanied by reduced electrolyte leakage, high chlorophyll, and soluble sugar content. ROS scavenging was also enhanced by 6-BA, resulting in reduced MDA and H2O2 accumulation and amplified antioxidant enzyme activities. Additionally, under the effect of 6-BA, the acceleration of lignin content and accumulation in the cell walls of wheat tissues, along with the activation of PAL (phenylalanine ammonia lyase), TAL (tyrosine ammonia lyase), and 4CL (4-hydroxycinnamate CoA ligase) activities and the increase in the level of transcription of the TaPAL and Ta4CL genes, were observed under waterlogging stress. Also, 6-BA improved the root growth system under waterlogging stress conditions. Further qPCR analysis revealed increased auxin signaling (TaPR1) in 6-BA-treated plants under waterlogging stress that was consistent with the induction of endogenous IAA hormone content under waterlogging stress conditions. Here, 6-BA also reduced yield loss, as compared to control plants. Thus, the obtained data suggested that, under the application of 6-BA, phenylpropanoid metabolism (i.e., lignin) was stimulated, playing a significant role in reducing the negative effects of waterlogging stress on yield, as evinced by the improved plant growth parameters.

Funder

Sichuan Science and Technology Support Program

National Natural Science Foundation of China

Crops Breeding Project in Sichuan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3