Functional annotation of creeping bentgrass protein sequences based on convolutional neural network

Author:

Jiang Han-Yu,He Jun

Abstract

Abstract Background Creeping bentgrass (Agrostis soionifera) is a perennial grass of Gramineae, belonging to cold season turfgrass, but has poor disease resistance. Up to now, little is known about the induced systemic resistance (ISR) mechanism, especially the relevant functional proteins, which is important to disease resistance of turfgrass. Achieving more information of proteins of infected creeping bentgrass is helpful to understand the ISR mechanism. Results With BDO treatment, creeping bentgrass seedlings were grown, and the ISR response was induced by infecting Rhizoctonia solani. High-quality protein sequences of creeping bentgrass seedlings were obtained. Some of protein sequences were functionally annotated according to the database alignment while a large part of the obtained protein sequences was left non-annotated. To treat the non-annotated sequences, a prediction model based on convolutional neural network was established with the dataset from Uniport database in three domains to acquire good performance, especially the higher false positive control rate. With established model, the non-annotated protein sequences of creeping bentgrass were analyzed to annotate proteins relevant to disease-resistance response and signal transduction. Conclusions The prediction model based on convolutional neural network was successfully applied to select good candidates of the proteins with functions relevant to the ISR mechanism from the protein sequences which cannot be annotated by database alignment. The waste of sequence data can be avoided, and research time and labor will be saved in further research of protein of creeping bentgrass by molecular biology technology. It also provides reference for other sequence analysis of turfgrass disease-resistance research.

Funder

China postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3