Systemic Resistance in Arabidopsis Induced by Rhizobacteria Requires Ethylene-Dependent Signaling at the Site of Application

Author:

Knoester Marga,Pieterse Corné M. J.,Bol John F.,Van Loon Leendert C.

Abstract

Root colonization of Arabidopsis thaliana by the nonpathogenic, rhizosphere-colonizing, biocontrol bacterium Pseudomonas fluorescens WCS417r has been shown to elicit induced systemic resistance (ISR) against Pseudomonas syringae pv. tomato (Pst). The ISR response differs from the pathogen-inducible systemic acquired resistance (SAR) response in that ISR is independent of salicylic acid and not associated with pathogenesis-related proteins. Several ethylene-response mutants were tested and showed essentially normal symptoms of Pst infection. ISR was abolished in the ethylene-insensitive mutant etr1-1, whereas SAR was unaffected. Similar results were obtained with the ethylene-insensitive mutants ein2 through ein7, indicating that the expression of ISR requires the complete signal-transduction pathway of ethylene known so far. The induction of ISR by WCS417r was not accompanied by increased ethylene production in roots or leaves, nor by increases in the expression of the genes encoding the ethylene biosynthetic enzymes 1-aminocyclopropane-1-carboxylic (ACC) synthase and ACC oxidase. The eir1 mutant, displaying ethylene insensitivity in the roots only, did not express ISR upon application of WCS417r to the roots, but did exhibit ISR when the inducing bacteria were infiltrated into the leaves. These results demonstrate that, for the induction of ISR, ethylene responsiveness is required at the site of application of inducing rhizobacteria.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3