Physiological and multi-omics responses of Neoporphyra haitanensis to dehydration-rehydration cycles

Author:

Wang Zekai,Lu Caiping,Chen Juanjuan,Luo Qijun,Yang Rui,Gu Denghui,Wang Tiegan,Zhang Peng,Chen Haimin

Abstract

Abstract Background Seaweeds in the upper intertidal zone experience extreme desiccation during low tide, followed by rapid rehydration during high tide. Porphyra sensu lato are typical upper intertidal seaweeds. Therefore, it is valuable to investigate the adaptive mechanisms of seaweed in response to dehydration-rehydration stress. Results A reduction in photosynthetic capacity and cell shrinkage were observed when N. haitanensis was dehydrated, and such changes were ameliorated once rehydrated. And the rate and extent of rehydration were affected by the air flow speed, water content before rehydration, and storage temperature and time. Rapid dehydration at high air-flow speed and storage at − 20 °C with water content of 10% caused less damage to N. haitanensis and better-protected cell activity. Moreover, proteomic and metabolomic analyses revealed the abundance members of the differentially expressed proteins (DEPs) and differentially abundant metabolites (DAMs) mainly involved in antioxidant system and osmotic regulation. The ascorbic acid-glutathione coupled with polyamine antioxidant system was enhanced in the dehydration response of N. haitanensis. The increased soluble sugar content, the accumulated polyols, but hardly changed (iso)floridoside and insignificant amount of sucrose during dehydration indicated that polyols as energetically cheaper organic osmolytes might help resist desiccation. Interestingly, the recovery of DAMs and DEPs upon rehydration was fast. Conclusions Our research results revealed that rapid dehydration and storage at − 20 °C were beneficial for recovery of N. haitanensis. And the strategy to resist dehydration was strongly directed toward antioxidant activation and osmotic regulation. This work provided valuable insights into physiological changes and adaptative mechanism in desiccation, which can be applied for seaweed farming.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3