Altered rumen microbiome and correlations of the metabolome in heat-stressed dairy cows at different growth stages

Author:

Feng Lei1ORCID,Zhang Yu1,Liu Wei1,Du Dewei1,Jiang Wenbo1,Wang Zihua1,Li Ning1ORCID,Hu Zhiyong1ORCID

Affiliation:

1. College of Animal Science and Technology, Shandong Agricultural University , Taian, China

Abstract

ABSTRACT Heat stress is one of the major stressors affecting dairy cow production, which causes great losses in animal husbandry production and economic development. This study combined 16S rDNA sequencing, metagenomic sequencing, and metabolomic analysis to investigate the effects of heat stress on the rumen microbiome and metabolism of cows. To achieve this, 10 cows each of growing heifers, heifers, and lactating cows were selected for sample collection in April and August (a total of 60 cows). Ruminal fluid was collected, filtered through gauze, and immediately transferred to liquid nitrogen prior to metagenomic, 16S rDNA sequencing, and metabolomic analyses. Heat stress increased the abundance of pathogenic bacteria, such as Treponema_2 , Sphingobacterium , and Streptococcus , in cattle at all growth stages, with the structure and composition of rumen microbial communities being the most affected by heat stress in growing heifers and the least affected by heat stress in lactating cows. Heat stress led to a significant decrease in carbohydrate metabolic function in growing heifers and heifers, whereas microbial function was the most stable in lactating cows, suggesting that changes in microbial function are not only more conserved than microbial composition but are also affected by age. Heat stress led to significant enrichment of fatty acyl metabolites in growing heifers, heifers, and lactating cows, and the heat stress indicator species Bacillus , Lactococcus , Streptococcus , and Enterococcus were significantly associated with fatty acyl compounds in growing heifers and heifers. Therefore, heat stress alters the metabolic status of cows by modulating fatty acid biosynthesis, the PPAR signaling pathway, and arachidonic acid metabolism through the regulation of long-chain fatty acids and other biomarkers in cows at three growth stages. IMPORTANCE Heat stress is one of the main causes of economic losses in the dairy industry worldwide; however, the mechanisms associated with the metabolic and microbial changes in heat stress remain unclear. Here, we characterized both the changes in metabolites, rumen microbial communities, and their functional potential indices derived from rumen fluid and serum samples from cows at different growth stages and under different climates. This study highlights that the rumen microbe may be involved in the regulation of lipid metabolism by modulating the fatty acyl metabolites. Under heat stress, the changes in the metabolic status of growing heifers, heifers, and lactating cows were closely related to arachidonic acid metabolism, fatty acid biosynthesis, and energy metabolism. Moreover, this study provides new markers for further research to understand the effects of heat stress on the physiological metabolism of Holstein cows and the time-dependent changes associated with growth stages.

Funder

National Natural Science Foundation of China

Breakthrough Breeding of High Quality and Efficient New Beef Cattle Variety

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3