Abstract
Abstract
Background
C. sinensis is an important economic crop with fluoride over-accumulation in its leaves, which poses a serious threat to human health due to its leaf consumption as tea. Recently, our study has indicated that cell wall proteins (CWPs) probably play a vital role in fluoride accumulation/detoxification in C. sinensis. However, there has been a lack in CWP identification and characterization up to now. This study is aimed to characterize cell wall proteome of C. sinensis leaves and to develop more CWPs related to stress response. A strategy of combined cell wall proteomics and N-glycoproteomics was employed to investigate CWPs. CWPs were extracted by sequential salt buffers, while N-glycoproteins were enriched by hydrophilic interaction chromatography method using C. sinensis leaves as a material. Afterwards all the proteins were subjected to UPLC-MS/MS analysis.
Results
A total of 501 CWPs and 195 CWPs were identified respectively by cell wall proteomics and N-glycoproteomics profiling with 118 CWPs in common. Notably, N-glycoproteomics is a feasible method for CWP identification, and it can enhance CWP coverage. Among identified CWPs, proteins acting on cell wall polysaccharides constitute the largest functional class, most of which might be involved in cell wall structure remodeling. The second largest functional class mainly encompass various proteases related to CWP turnover and maturation. Oxidoreductases represent the third largest functional class, most of which (especially Class III peroxidases) participate in defense response. As expected, identified CWPs are mainly related to plant cell wall formation and defense response.
Conclusion
This was the first large-scale investigation of CWPs in C. sinensis through cell wall proteomics and N-glycoproteomics. Our results not only provide a database for further research on CWPs, but also an insight into cell wall formation and defense response in C. sinensis.
Funder
Natural Science Foundation of Hubei Province
Key Research and Development Program of Hubei province
Publisher
Springer Science and Business Media LLC
Reference112 articles.
1. Roberts K. How the cell wall acquired a cellular context. Plant Physiol. 2001;125(1):127–30. https://doi.org/10.1104/pp.125.1.127.
2. Carpita NC, Gibeaut DM. Structural models of primary cell walls in flowering plants, consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993;3(1):1–30. https://doi.org/10.1111/j.1365-313X.1993.tb00007.x.
3. Cassab GI, Varner JE. Cell wall proteins. Annu Rev Plant Physiol Plant Mol Biol. 1992;39(4):321–53.
4. Albenne C, Canut H, Elisabeth J. Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front Plant Sci. 2013;4(4):111.
5. Zhu JM, Chen SX, Alvarez S, Asirvatham VS, Schachtman DP, Wu YJ, et al. Cell wall proteome in the maize primary root elongation zone. I. Extraction and identification of water-soluble and lightly ionically bound proteins. Plant Physiol. 2006;140(1):311–25. https://doi.org/10.1104/pp.105.070219.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献