Investigation of cell wall proteins of C. sinensis leaves by combining cell wall proteomics and N-glycoproteomics

Author:

Liu Yanli,Ma Linlong,Cao Dan,Gong Ziming,Fan Jing,Hu Hongju,Jin XiaofangORCID

Abstract

Abstract Background C. sinensis is an important economic crop with fluoride over-accumulation in its leaves, which poses a serious threat to human health due to its leaf consumption as tea. Recently, our study has indicated that cell wall proteins (CWPs) probably play a vital role in fluoride accumulation/detoxification in C. sinensis. However, there has been a lack in CWP identification and characterization up to now. This study is aimed to characterize cell wall proteome of C. sinensis leaves and to develop more CWPs related to stress response. A strategy of combined cell wall proteomics and N-glycoproteomics was employed to investigate CWPs. CWPs were extracted by sequential salt buffers, while N-glycoproteins were enriched by hydrophilic interaction chromatography method using C. sinensis leaves as a material. Afterwards all the proteins were subjected to UPLC-MS/MS analysis. Results A total of 501 CWPs and 195 CWPs were identified respectively by cell wall proteomics and N-glycoproteomics profiling with 118 CWPs in common. Notably, N-glycoproteomics is a feasible method for CWP identification, and it can enhance CWP coverage. Among identified CWPs, proteins acting on cell wall polysaccharides constitute the largest functional class, most of which might be involved in cell wall structure remodeling. The second largest functional class mainly encompass various proteases related to CWP turnover and maturation. Oxidoreductases represent the third largest functional class, most of which (especially Class III peroxidases) participate in defense response. As expected, identified CWPs are mainly related to plant cell wall formation and defense response. Conclusion This was the first large-scale investigation of CWPs in C. sinensis through cell wall proteomics and N-glycoproteomics. Our results not only provide a database for further research on CWPs, but also an insight into cell wall formation and defense response in C. sinensis.

Funder

Natural Science Foundation of Hubei Province

Key Research and Development Program of Hubei province

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3