Cell Wall Proteome in the Maize Primary Root Elongation Zone. I. Extraction and Identification of Water-Soluble and Lightly Ionically Bound Proteins

Author:

Zhu Jinming1,Chen Sixue1,Alvarez Sophie1,Asirvatham Victor S.1,Schachtman Daniel P.1,Wu Yajun1,Sharp Robert E.1

Affiliation:

1. Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211 (J.Z., R.E.S.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (S.C., S.A., V.S.A., D.P.S.); and Department of Plants, Soils and Biometeorology, Utah State University, Logan, Utah 84322 (Y.W.)

Abstract

Abstract Cell wall proteins (CWPs) play important roles in various processes, including cell elongation. However, relatively little is known about the composition of CWPs in growing regions. We are using a proteomics approach to gain a comprehensive understanding of the identity of CWPs in the maize (Zea mays) primary root elongation zone. As the first step, we examined the effectiveness of a vacuum infiltration-centrifugation technique for extracting water-soluble and loosely ionically bound (fraction 1) CWPs from the root elongation zone. The purity of the CWP extract was evaluated by comparing with total soluble proteins extracted from homogenized tissue. Several lines of evidence indicated that the vacuum infiltration-centrifugation technique effectively enriched for CWPs. Protein identification revealed that 84% of the CWPs were different from the total soluble proteins. About 40% of the fraction 1 CWPs had traditional signal peptides and 33% were predicted to be nonclassical secretory proteins, whereas only 3% and 11%, respectively, of the total soluble proteins were in these categories. Many of the CWPs have previously been shown to be involved in cell wall metabolism and cell elongation. In addition, maize has type II cell walls, and several of the CWPs identified in this study have not been identified in previous cell wall proteomics studies that have focused only on type I walls. These proteins include endo-1,3;1,4-β-d-glucanase and α-l-arabinofuranosidase, which act on the major polysaccharides only or mainly present in type II cell walls.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3