Abstract
AbstractBackgroundThe element selenium (Se) deficiency is thought to be a global human health problem, which could disperse by daily-supplement from Se-rich food. Increasing the accumulation of Se in rice grain is an approach matched to these nutrient demands. Nonetheless, Se is shown to be essential but also toxic to plants, with a narrow margin between deficiency and toxicity. Notably, the regulatory mechanism balancing the accumulation and tolerance of Se in Se-rich rice plants remains unknown.ResultsIn this study, we investigated the phenotypical, physiological, and biochemical alterations of Se-rich rice in the exposure to a variety of Se applications. Results showed that the Se-rich rice was able to accumulate more abundance of Se from the root under a low Se environment comparing to the Se-free rice. Besides, excessive Se led to phytotoxic effects on Se-rich rice plants by inducing chlorosis and dwarfness, decreasing the contents of antioxidant, and exacerbating oxidative stresses. Furthermore, both phosphate transporterOsPT2and sulfate transportersOsSultr1;2may contribute to the uptake of selenate in rice.ConclusionsSe-rich red rice is more sensitive to exogenous application of Se, while and the most effective application of Se in roots of Se-rich rice was reached in 20 μM. Our findings present a direct way to evaluate the toxic effects of Se-rich rice in the Se contaminated field. Conclusively, some long-term field trial strategies are suggested to be included in the evaluation of risks and benefits within various field managements.
Funder
the International Cooperation and Exchange Projects of Sichuan Province
the International S&T Innovation and Cooperation Project of Sichuan Province
The National Natural Science Foundation of China
Natural Science Foundation of Hubei Province
the Start-up Foundation of Hubei University of Medicine
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Schiavon M, Pilon-Smits EAH. Selenium biofortification and phytoremediation Phytotechnologies: a review. J Environ Qual. 2017;46:10. https://doi.org/10.2134/jeq2016.09.0342.
2. Mansour ATE, Goda AA, Omar EA, Khalil HS, Esteban MÁ. Dietary supplementation of organic selenium improves growth, survival, antioxidant and immune status of meagre, Argyrosomus regius, juveniles. Fish Shellfish Immunol. 2017;68:516–24. https://doi.org/10.1016/j.fsi.2017.07.060.
3. Zeng R, Liang Y, Farooq MU, Zhang Y, Ei HH, Tang Z, et al. Alterations in transcriptome and antioxidant activity of naturally aged mice exposed to selenium-rich rice. Environ Sci Pollut Res. 2019;26:834–44.
4. Ošťádalová I, Charvátová Z, Wilhelm J. Lipofuscin-like pigments in the rat heart during early postnatal development: effect of selenium supplementation. Physiol Res. 2010;59:881–6.
5. Pachuau L, Dutta RS, Roy PK, Kalita P, Lalhlenmawia H. Physicochemical and disintegrant properties of glutinous rice starch of Mizoram. India Int J Biol Macromol. 2017;95:1298–304. https://doi.org/10.1016/j.ijbiomac.2016.11.029.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献