Abstract
Abstract
Background
Allelic variation underlying the quantitative traits in plants is caused by the extremely complex regulation process. Tree peony originated in China is a peculiar ornamental, medicinal and oil woody plant. Paeonia rockii, one of tree peony species, is a precious emerging woody oil crop. However, in this valuable plant, the study of functional loci associated with yield traits has rarely been identified. Therefore, to explore the genetic architecture of 24 yield quantitative traits, the association mapping was first reported in 420 unrelated cultivated P. rockii individuals based on the next-generation sequencing (NGS) and single-molecule long-read sequencing (SMLRS).
Results
The developed 58 pairs of polymorphic expressed sequence tag-simple sequence repeat (EST-SSR) markers from 959 candidate transcription factors (TFs) associated with yield were used for genotyping the 420 P. rockii accessions. We observed a high level of genetic diversity (polymorphic information content, PIC = 0.514) and low linkage disequilibrium (LD) between EST-SSRs. Moreover, four subpopulations in the association population were revealed by STRUCTURE analyses. Further, single-marker association analysis identified 141 significant associations, involving 17 quantitative traits and 41 EST-SSRs. These loci were mainly from AP2, TCP, MYB, HSF, bHLH, GATA, and B3 gene families and showed a small proportion of the phenotypic variance (3.79 to 37.45%).
Conclusions
Our results summarize a valuable collection of functional loci associated with yield traits in P. rockii, and provide a precious resource that reveals allelic variation underlying quantitative traits in Paeonia and other woody oil crops.
Funder
National Natural Science Foundation of China
Special Project to Build World-class Disciplines of Beijing Forestry University
Publisher
Springer Science and Business Media LLC
Reference91 articles.
1. Wu CT, Liu R, Li Y, Zeng RZ. Computational identification of microRNA in five woody oil tree crops and their miRNA target sequences. J Oil Palm Res. 2018;30(1):47–60.
2. Wang J, Lin W, Yin Z, Wang L, Dong S, An JY, Lin ZX, Yu HY, Shi LL, Lin SZ, Chen SL. Comprehensive evaluation of fuel properties and complex regulation of intracellular transporters for high oil production in developing seeds of Prunus sibirica for woody biodiesel. Biotechnol Biofuels. 2019;12(1):6.
3. Cheng FY, Li JJ, Chen DZ, Zhang ZS. Chinese Paeonia Rockii. Beijing: Chinese Forestry Publishing House; 2005.
4. Yuan JH, Cheng FY, Zhou SL. Genetic structure of the tree peony (Paeonia rockii) and the Qinling Mountains as a geographic barrier driving the fragmentation of a large population. PLoS One. 2012;7(4):e34955.
5. Li SS, Yuan RY, Chen LG, Wang LS, Hao XH, Wang LJ, Zheng XC, Du H. Systematic qualitative and quantitative assessment of fatty acids in the seeds of 60 tree peony (Paeonia section Moutan DC.) cultivars by GC–MS. Food Chem. 2015a;173:133–40.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献