Quantile function modeling with application to salinity tolerance analysis of plant data

Author:

Agarwal Gaurav,Saade Stephanie,Shahid Mohammad,Tester Mark,Sun YingORCID

Abstract

Abstract Background In plant science, the study of salinity tolerance is crucial to improving plant growth and productivity under saline conditions. Since quantile regression is a more robust, comprehensive and flexible method of statistical analysis than the commonly used mean regression methods, we applied a set of quantile analysis methods to barley field data. We use univariate and bivariate quantile analysis methods to study the effect of plant traits on yield and salinity tolerance at different quantiles. Results We evaluate the performance of barley accessions under fresh and saline water using quantile regression with covariates such as flowering time, ear number per plant, and grain number per ear. We identify the traits affecting the accessions with high yields, such as late flowering time has a negative impact on yield. Salinity tolerance indices evaluate plant performance under saline conditions relative to control conditions, so we identify the traits affecting the accessions with high values of indices using quantile regression. It was observed that an increase in ear number per plant and grain number per ear in saline conditions increases the salinity tolerance of plants. In the case of grain number per ear, the rate of increase being higher for plants with high yield than plants with average yield. Bivariate quantile analysis methods were used to link the salinity tolerance index with plant traits, and it was observed that the index remains stable for earlier flowering times but declines as the flowering time decreases. Conclusions This analysis has revealed new dimensions of plant responses to salinity that could be relevant to salinity tolerance. Use of univariate quantile analyses for quantifying yield under both conditions facilitates the identification of traits affecting salinity tolerance and is more informative than mean regression. The bivariate quantile analyses allow linking plant traits to salinity tolerance index directly by predicting the joint distribution of yield and it also allows a nonlinear relationship between the yield and plant traits.

Funder

King Abdullah University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3