Sensor, IoT-based post-harvest shelf life determination of tomato (Lycopersicon esculentum) through machine learning predictive analysis for intelligent transport

Author:

,Shankaraswamy J.ORCID,Radhika T.S.L.,

Abstract

Aim: The current research explores the potential of machine learning predictive models in optimizing the storage conditions of tomatoes. This is achieved through Internet of Things (IoT) technology, sensors, cameras, and microprocessors integrated into refrigerators along the supply chain. Methodology: Controlling temperature and humidity inside the refrigerated container was accomplished by implementing the Arduino microcontroller and supplementary hardware components, including the ESP32 module relay, an advancement over the ESP8266 microcontroller. The Arduino Integrated Development Environment (IDE) was used as software platform for this experimentation. Various parameters, including humidity, oxygen, carbon-di-oxide, and shelf life, were recorded at different temperatures and on different days. Subsequently, the collected data was analyzed employing machine-learning models to determine the most effective prediction model for these variables. Results: From the results it has been revealed that apolynomial of degree 4 is the best-fit regressor model for the data on humidity. Polynomials of degrees 2, 2, and 3 are the best models for the target variables oxygen, carbon-di-oxide, and shelf life. Interpretation: During analysis, This result suggests that different polynomial degrees are optimal for modeling different variables in the dataset. Polynomials of degrees 2, 2, and 3 are the best ML models for the target variables oxygen, carbon-di-oxide, and shelf life, respectively,to enhance the effectiveness of our predictive models. Key words: Io T sensors, ML models, Quantile loss, Supply chain, Tomato

Publisher

Triveni Enterprises

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3