Integrated transcriptome and methylome analyses reveal the molecular regulation of drought stress in wild strawberry (Fragaria nilgerrensis)

Author:

Cao Qiang,Huang Lin,Li Jiamin,Qu Peng,Tao Pang,Crabbe M. James C.,Zhang Ticao,Qiao Qin

Abstract

Abstract Background Fragaria nilgerrensis, which is a diploid wild strawberry with excellent drought-resistance, would provide useful candidate genes for improving drought resistance of cultivated strawberry. So far, its molecular regulatory networks involved in drought stress are unclear. We therefore investigated the drought response regulatory networks of F. nilgerrensis based on the integrated analysis of DNA methylation, transcriptome and physiological traits during four time points under drought stress.  Results The most differentially expressed genes and the physiological changes were found at 8 days (T8) compared with 0 day (T0, control). Methylome analysis revealed slight dynamic changes in genome-wide mC levels under drought conditions, while the most hypomethylated and hypermethylated regions were identified at T4 and T8. Association analysis of the methylome and transcriptome revealed that unexpressed genes exhibited expected hypermethylation levels in mCHG and mCHH contexts, and highly expressed genes exhibited corresponding hypomethylation levels in the gene body, but mCG contexts showed the opposite trend. Then, 835 differentially methylated and expressed genes were identified and grouped into four clustering patterns to characterize their functions. The genes with either negative or positive correlation between methylation and gene expression were mainly associated with kinases, Reactive Oxygen Species (ROS) synthesis, scavenging, and the abscisic acid (ABA) signal pathway. Consistently, weighted gene co-expression network analysis (WGCNA) revealed Hub genes including NCED, CYP707A2, PP2Cs and others that play important roles in the ABA signaling pathway. Conclusion F. nilgerrensis drought is dominated by ABA-dependent pathways, possibly accompanied by ABA-independent crosstalk. DNA methylation may affect gene expression, but their correlation was more subtle and multiple types of association exist. Maintaining the balance between ROS regeneration and scavenging is an important factor in drought resistance in F. nilgerrensis. These results deepen our understanding of drought resistance and its application in breeding in strawberry plants.

Funder

National Natural Science Foundation of China

Applied Basic Research Project of Yunnan

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3