Author:
Nong Qian,Lin Li,Xie Jinlan,Mo Zhanghong,Malviya Mukesh Kumar,Solanki Manoj Kumar,Wang Zeping,Song Xiupeng,Li Yangrui,Li Changning
Abstract
Abstract
Background
Drought limits crop growth and is an important issue in commercial sugarcane (Saccharum officinarum) production. Drought tolerance in sugarcane induced by endophytic nitrogen-fixing bacteria is a complex biological process that ranges from altered gene expression and cellular metabolism to changes in growth and productivity.
Results
In this study, changes in physiological features and transcriptome related to drought tolerance in sugarcane conferred by the Burkholderia endophytic nitrogen-fixing bacterial strain GXS16 were investigated. Sugarcane samples inoculated with GXS16 exhibited significantly higher leaf relative water content than those without GXS16 inoculation during the drought stages. Sugarcane treated with GXS16 had lower levels of H2O2 and higher levels of abscisic acid than sugarcane not treated with GXS16 in the non-watering groups. Transcriptomic analysis of sugarcane roots identified multiple differentially expressed genes between adjacent stages under different treatments. Moreover, both trend and weighted correlation network analyses revealed that carotenoid biosynthesis, terpenoid backbone biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction strongly contributed to the drought-tolerant phenotype of sugarcane induced by GXS16 treatment. Accordingly, a gene regulatory network including four differentially regulated genes from carotenoid biosynthesis (crtB, crtZ, ZEP and CYP707A) and three genes from terpenoid backbone biosynthesis (dxs, dxr, and PCME) was constructed.
Conclusions
This study provides insights into the molecular mechanisms underlying the application of GXS16 treatment to enhance drought tolerance in sugarcane, which will lay the foundation for crop development and improve productivity.
Funder
National Natural Science Foundation of China
Guangxi Science and technology project
Guangxi Academy of Agricultural Sciences Fund
Guangxi Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. FAO. Food and Agriculture Organization of the United Nations, 2018. FAOSTAT data. http://www.fao.org/faostat/en/#home. (Accessed 11 Jan 2018).
2. Rukai C, Yuan Z. Sugarcane production and research in China. Proc Int Soc Sugar Cane Technol. 2010;27:1–7.
3. Basnayake J, Jackson PA, Inman-Bamber NG, Lakshmanan P. Sugarcane for water-limited environments. Genetic variation in cane yield and sugar content in response to water stress. J. Exp. Bot. 2012; 63(16): 6023–6033.
4. Zada A, Ali A, Binjawhar DN, Abdel-Hameed UK, Shah AH, Gill SM, Hussain I, Abbas Z, Ullah Z, Sher H, Ali I. Molecular and Physiological Evaluation of Bread Wheat (Triticum aestivum L.) Genotypes for Stay Green under Drought Stress. Genes (Basel).2022; 13(12):2261.
5. Mikolajczak K, Kuczynska A, Krajewski P, Kempa M, Nuc M. Transcriptome profiling disclosed the effect of single and combined drought and heat stress on reprogramming of genes expression in barley flag leaf. Front Plant Sci. 2022;13:1096685.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献