Transcriptome profiling disclosed the effect of single and combined drought and heat stress on reprogramming of genes expression in barley flag leaf

Author:

Mikołajczak Krzysztof,Kuczyńska Anetta,Krajewski Paweł,Kempa Michał,Nuc Maria

Abstract

Despite numerous studies aimed at unraveling the genetic background of barley’s response to abiotic stress, the modulation of the transcriptome induced by combinatorial drought and increased temperature remains largely unrecognized. Very limited studies were done, especially on the flag leaf, which plays an important role in grain filling in cereals. In the present study, transcriptome profiles, along with chlorophyll fluorescence parameters and yield components, were compared between barley genotypes with different flag leaf sizes under single and combined drought and heat stress. High-throughput mRNA sequencing revealed 2,457 differentially expressed genes, which were functionally interpreted using Gene Ontology term enrichment analysis. The transcriptomic signature under double stress was more similar to effects caused by drought than by elevated temperature; it was also manifested at phenotypic and chlorophyll fluorescence levels. Both common and stress-specific changes in transcript abundance were identified. Genes regulated commonly across stress treatments, determining universal stress responses, were associated, among others, with responses to drought, heat, and oxidative stress. In addition, changes specific to the size of the flag leaf blade were found. Our study allowed us to identify sets of genes assigned to various processes underlying the response to drought and heat, including photosynthesis, the abscisic acid pathway, and lipid transport. Genes encoding LEA proteins, including dehydrins and heat shock proteins, were especially induced by stress treatments. Some association between genetic composition and flag leaf size was confirmed. However, there was no general coincidence between SNP polymorphism of genotypes and differential expression of genes induced by stress factors. This research provided novel insight into the molecular mechanisms of barley flag leaf that determine drought and heat response, as well as their co-occurrence.

Funder

Narodowe Centrum Nauki

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3