Cytological, physiological and transcriptomic analysis of variegated Leaves in Primulina pungentisepala offspring

Author:

Chen Jiancun,Li Yueya,He Dong,Bai Meng,Li Bo,Zhang Qixiang,Luo Le

Abstract

Abstract Background Primulina pungentisepala is suitable for use as a potted plant because of its beautiful leaf variegation, which is significantly different in its selfed offspring. However, the mechanism of P. pungentisepala leaf variegation is unclear. In this study, two types of offspring showing the greatest differences were compared in terms of leaf structure, chlorophyll contents, chlorophyll fluorescence parameters and transcriptomes to provide a reference for studying the molecular mechanism of structural leaf variegation. Results Air spaces were found between water storage tissue, and the palisade tissue cells were spherical in the white type. The content of chlorophyll a and total chlorophyll (chlorophyll a + b) was significantly lower in the white type, but there were no significant differences in the content of chlorophyll b, chlorophyll a/b or chlorophyll fluorescence parameters between the white and green types. We performed transcriptomic sequencing to identify differentially expressed genes (DEGs) involved in cell division and differentiation, chlorophyll metabolism and photosynthesis. Among these genes, the expression of the cell division- and differentiation-related leucine-rich repeat receptor-like kinases (LRR-RLKs), xyloglucan endotransglycosylase/hydrolase (XET/H), pectinesterase (PE), expansin (EXP), cellulose synthase-like (CSL), VARIEGATED 3 (VAR3), and ZAT10 genes were downregulated in the white type, which might have promoted the development air spaces and variant palisade cells. Chlorophyll biosynthesis-related hydroxymethylbilane synthase (HEMC) and the H subunit of magnesium chelatase (CHLH) were downregulated, while chlorophyll degradation-related chlorophyllase-2 (CHL2) was upregulated in the white type, which might have led to lower chlorophyll accumulation. Conclusion Leaf variegation in P. pungentisepala was caused by a combination of mechanisms involving structural variegation and low chlorophyll levels. Our research provides significant insights into the molecular mechanisms of structural leaf variegation.

Funder

Fundamental Research Funds for the Central Universities

Beijing Forestry University research project Research on Commercial Production Technology of Potted Gesnariads, China New Flower Project

Research on the Cultivation and Commercial Production of New Superior Varieties of Beijing Characteristic Flowers

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3