Fine Mapping of BoVl Conferring the Variegated Leaf in Ornamental Kale (Brassica oleracea var. acephala)

Author:

Ren Jie,Zou Jiaqi,Zou Xiao,Song Gengxing,Gong Zhichao,Liu Zhiyong,Ji Ruiqin,Feng HuiORCID

Abstract

Ornamental kale, as a burgeoning landscaping plant, is gaining popularity for its rich color patterns in leaf and cold tolerance. Leaf variegation endows ornamental kale with unique ornamental characters, and the mutants are ideal materials for exploring the formation mechanisms of variegated phenotype. Herein, we identified a novel variegated leaf kale mutant ‘JC007-2B’ with green margins and white centers. Morphological observations and physiological determinations of the green leaf stage (S1), albino stage (S2) and variegated leaf stage (S3) demonstrated that the chloroplast structure and photosynthetic pigment content in the white sectors (S3_C) of variegated leaves were abnormal. Genetic analysis revealed that a single dominant nuclear gene (BoVl) controlled the variegated leaf trait of ‘JC007-2B’, and three candidate genes for BoVl were fine-mapped to a 6.74 Kb interval on chromosome C03. Multiple sequence alignment among the green-leaf mapping parent ‘BS’, recombinant individuals, mutant parent ‘JC007-2B’ and its same originated DH line population established that the mutation sites in Bo3g002080 exhibited a complete consensus. Bo3g002080, homologous to Arabidopsis MED4, was identified as the candidate gene for BoVl. Expression analysis showed that Bo3g002080 displayed a 2158.85-fold higher expression at albino stage than that in green leaf stage. Transcriptome analysis showed that related pathways of photosynthesis and chloroplast development were significantly enriched in the white sectors, and relevant DEGs involved in these pathways were almost down-regulated. Overall, our study provides a new gene resource for cultivar breeding in ornamental kale and contributes to uncovering the molecular genetic mechanism underlying the variegated leaf formation.

Funder

National Natural Science Foundation of China

Liaoning Natural Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3