Author:
Pan Xinya,Wang Pengfei,Wei Xianwei,Zhang Jinxin,Xu Bingcheng,Chen Yinglong,Wei Gehong,Wang Zhi
Abstract
Abstract
Background
The growth of alfalfa (Medicago sativa L.) is significantly hampered by drought and nutrient deficiencies. The identification of root architectural and anatomical characteristics holds paramount importance for the development of alfalfa genotypes with enhanced adaptation to adverse environmental conditions. In this study, we employed a visual rhizobox system to investigate the variability in root system architecture (including root depth, root length, root tips number, etc.), anatomical features (such as cortical traits, total stele area, number and area of vessel, etc.), as well as nitrogen and phosphorus uptake across 53 alfalfa genotypes during the seedling stage.
Results
Out of the 42 traits measured, 21 root traits, along with nitrogen (N) and phosphorus (P) uptake, displayed higher coefficients of variation (CVs ≥ 0.25) among the tested genotypes. Local root morphological and anatomical traits exhibited more significant variation than global root traits. Twenty-three traits with CVs ≥ 0.25 constituted to six principal components (eigenvalues > 1), collectively accounting for 88.0% of the overall genotypic variation. Traits such as total root length, number of root tips, maximal root depth, and others exhibited positive correlations with shoot dry mass and root dry mass. Additionally, total stele area and xylem vessel area showed positive correlations with N and P uptake.
Conclusions
These root traits, which have demonstrated associations with biomass and nutrient uptake, may be considered for the breeding of alfalfa genotypes that possess efficient resource absorption and increased adaptability to abiotic stress, following validation during the entire growth period in the field.
Funder
National Natural Science Foundation of China
Youth Project of the Natural Science Basic Research Program of Shaanxi Province, China
Key Project of Forestry Science and Technology Innovation of Shaanxi Province, China
Ordos City Science and Technology Planning Project, China
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献