MORPHOLOGICAL AND PHYSIOLOGICAL RESPONSES OF MAIZE TO VARYING NITROGEN SOURCES AND STRESS LEVELS IN HYDROPONIC SYSTEMS: A COMPARATIVE STUDY

Author:

RAHMAN S. M. Abidur1ORCID,MOMEN Billal Hossain1ORCID,TANVIR Rashedur Rahman1,BISWAS Bitopi1ORCID,YASMIN Mosammat Nilufar1,KHAN Tariful Alam1,ISLAM M. Robiul1ORCID

Affiliation:

1. Farming Systems Engineering Laboratory, Department of Agronomy and Agricultural Extension, Rajshahi University, Rajshahi, Bangladesh

Abstract

A hydroponic experiment was conducted at the Precision and Automated Agriculture Laboratory, Department of Agronomy and Agricultural Extension, University of Rajshahi, from April to August 2023. The objective was to investigate the morphological and physiological responses of maize to varying nitrogen sources and stress levels in hydroponic systems. The experiment comprised three nitrogen treatments: CN (100% chemical nitrogen as 2 mM NH4NO3), ON (100% organic nitrogen as 4 mM glycine), and LN (low nitrogen as 10% of 2 mM NH4NO3 chemical nitrogen solution). The popular maize variety NH7720 (marketed by Syngenta Bangladesh Limited) was used. The experiments followed a completely randomised design with three replications. The CN treatment consistently outperformed the ON and LN treatments in various growth-related parameters, including plant height (72.73 cm), leaf area (295.54 cm²), shoot dry weight (0.65 g/plant), total chlorophyll content (3.11 mg/g), and shoot (11.06%) and root (10.82%) protein content, indicating that adequate nitrogen treatment stimulated strong growth and development in maize plants. Conversely, the LN treatment exhibited a superior shoot-to-root ratio (85.43%), proline accumulation (188.01 µg/g), number of root tips (21.25), root length (31.65 cm), root network area (619.10 cm²), root diameter (5.63 mm), root volume (13944.71 mm³), and root surface area (3705.51 mm²). These results suggest that under nitrogen-deficient conditions, maize plants allocate resources to root development and stress tolerance mechanisms. The organic nitrogen (ON) treatment showed intermediate results, being statistically similar to both the CN and LN treatments across a range of characteristics, suggesting that organic nitrogen or glycine might be less effective than chemical nitrogen or ammonium nitrate in promoting optimal maize growth.

Publisher

University of Life Sciences in lasi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3