Author:
Bhandari Prashant,Kim Juhee,Lee Tong Geon
Abstract
Abstract
Background
The fresh-market tomato (Solanum lycopersicum) is bred for direct consumption and is selected for a high yield of large fruits. To understand the genetic variations (distinct types of DNA sequence polymorphism) that influence the yield, we collected the phenotypic variations in the yields of total fruit, extra-large-sized fruit, small-sized fruit, or red-colored fruit from 68 core inbred contemporary U.S. fresh-market tomatoes for three consecutive years and the genomic information in 8,289,741 single nucleotide polymorphism (SNP) positions from the whole-genome resequencing of these tomatoes.
Results
Genome-wide association (GWA) mapping using the SNP data with or without SNP filtering steps using the regularization methods, validated with quantitative trait loci (QTL) linkage mapping, identified 18 significant association signals for traits evaluated. Among them, 10 of which were not located within genomic regions previously identified as being associated with fruit size/shape. When mapping-driven association signals [558 SNPs associated with 28 yield (component) traits] were used to calculate genomic estimated breeding values (GEBVs) of evaluated traits, the prediction accuracies of the extra-large-sized fruit and small-sized fruit yields were higher than those of the total and red-colored fruit yields, as we tested the generated breeding values in inbred tomatoes and F2 populations. Improved accuracy in GEBV calculation of evaluated traits was achieved by using 364 SNPs identified using the regularization methods.
Conclusions
Together, these results provide an understanding of the genetic variations underlying the heritable phenotypic variability in yield in contemporary tomato breeding and the information necessary for improving such economically important and complex quantitative trait through breeding.
Publisher
Springer Science and Business Media LLC
Reference104 articles.
1. Food and Agriculture Organization of the United Nations. 2016. Value of agricultural production. 21 Sep. 2022. http://www.fao.org/faostat/en/#data/QC/metadata.
2. U.S. Department of Agriculture. 2016. Tomatoes. 11 Sep. 2022. www.ers.usda.gov/topics/crops/vegetables-pulses/tomatoes.
3. U.S. Department of Agriculture. Shipping Point and Market Inspection Instructions for Tomatoes. 2005. 21 Sep. 2022. www.ams.usda.gov/sites/default/files/media/Tomato_Inspection_Instructions%5B1%5D.pdf.
4. Scott JW, Myers JR, Boches PS, Nichols CG, Angell FF. Classical genetics and traditional breeding. In: Liedl BE, Labate JA, Stommel JR, Slade A, Kole C, editors. Genetics, genomics, and breeding of tomato. Boca Raton: CRC Press; 2013. p. 37–74.
5. Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, et al. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell. 2020;182:145–61.e23.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献