Abstract
Abstract
Background
The Hessian fly (Mayetiola destructor), belonging to the gall midge family (Cecidomyiidae), is a devastating pest of wheat (Triticum aestivum) causing significant yield losses. Despite identification and characterization of numerous Hessian fly-responsive genes and associated biological pathways involved in wheat defense against this dipteran pest, their functional validation has been challenging. This is largely attributed to the large genome, polyploidy, repetitive DNA, and limited genetic resources in hexaploid wheat. The diploid progenitor Aegilops tauschii, D-genome donor of modern-day hexaploid wheat, offers an ideal surrogate eliminating the need to target all three homeologous chromosomes (A, B and D) individually, and thereby making the functional validation of candidate Hessian fly-responsive genes plausible. Furthermore, the well-annotated sequence of Ae. tauschii genome and availability of genetic resources amenable to manipulations makes the functional assays less tedious and time-consuming. However, prior to utilization of this diploid genome for downstream studies, it is imperative to characterize its physical and molecular responses to Hessian fly.
Results
In this study we screened five Ae. tauschii accessions for their response to the Hessian fly biotypes L and vH13. Two lines were identified that exhibited a homozygous resistance response to feeding by both Hessian fly biotypes. Studies using physical measurements and neutral red staining showed that the resistant Ae. tauschii accessions resembled hexaploid wheat in their phenotypic responses to Hessian fly, that included similarities in larval developmental stages, leaf and plant growth, and cell wall permeability. Furthermore, molecular responses, characterized by gene expression profiling using quantitative real-time PCR, in select resistant Ae. tauschii lines also revealed similarities with resistant hexaploid wheat.
Conclusions
Phenotypic and molecular characterization of Ae. tauschii to Hessian fly infestation revealed resistant accessions that shared similarities to hexaploid wheat. Resembling the resistant hexaploid wheat, the Ae. tauschii accessions mount an early defense strategy involving defense proteins including lectins, secondary metabolites and reactive oxygen species (ROS) radicals. Our results reveal the suitability of the diploid progenitor for use as an ideal tool for functional genomics research in deciphering the wheat-Hessian fly molecular interactions.
Publisher
Springer Science and Business Media LLC
Reference78 articles.
1. Flanders KL, Reisig DD, Buntin GD, Winslow M, Herbert Jr. DA, Johnson DW. Biology and management of Hessian fly in the southeast. Alabama Cooperative Extension System 2013;ANR1069.
2. Schmid RB, Knutson A, Giles KL, McCornack BP. Hessian fly (Diptera: Cecidomyiidae) biology and management in wheat. J Integra Pest Manag. 2018;9:1–12.
3. Smiley RW, Gourlie JA, Whittaker RG, Easley SA, Kidwell KK. Economic impact of hessian fly (Diptera: Cecidomyiidae) on spring wheat in Oregon and additive yield losses with Fusarium crown rot and lesion nematode. J Econ Entomol. 2004;97:397–408.
4. Stuart JJ, Chen MS, Shukle RS, Harris MO. Gall midges (hessian flies) as plant pathogens. Annu Rev Phytopathol. 2012;50:339–57.
5. Hatchett JH, Gallun RL. Genetics of the ability of the hessian fly, Mayetiola destructor, to survive on wheats having different genes for resistance. Ann Entomol Soc Am. 1970;63:1400–7.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献