Identifying novel sources of resistance to wheat stem sawfly in five wild wheat species

Author:

Peirce Erika S12ORCID,Evers Byron3,Winn Zachary J4,Raupp W John5,Guttieri Mary6,Fritz Allan K7,Poland Jesse8,Akhunov Eduard5,Haley Scott4,Mason Esten4,Nachappa Punya2ORCID

Affiliation:

1. Rangeland Resources and Systems Research Unit, USDA‐ARS Fort Collins CO USA

2. Department of Agricultural Biology Colorado State University Fort Collins CO USA

3. BayerCrop Science Manhattan KS USA

4. Department of Soil and Crop Sciences Colorado State University Fort Collins CO USA

5. Wheat Genetics Resource Center and Department of Plant Pathology Throckmorton Hall, Kansas Wheat Innovation Center Manhattan KS USA

6. USDA Agricultural Research Service, Center for Grain and Animal Health Research Hard Winter Wheat Genetics Research Unit Manhattan KS USA

7. Department of Agronomy Kansas State University Manhattan KS USA

8. King Abdullah University of Science and Technology Center for Desert Agriculture KAUST Thuwal Kingdom of Saudi Arabia

Abstract

AbstractBACKGROUNDThe wheat stem sawfly (WSS, Cephus cinctus) is a major pest of wheat (Triticum aestivum) and can cause significant yield losses. WSS damage results from stem boring and/or cutting, leading to the lodging of wheat plants. Although solid‐stem wheat genotypes can effectively reduce larval survival, they may have lower yields than hollow‐stem genotypes and show inconsistent solidness expression. Because of limited resistance sources to WSS, evaluating diverse wheat germplasm for novel resistance genes is crucial. We evaluated 91 accessions across five wild wheat species (Triticum monococcum, T. urartu, T. turgidum, T. timopheevii, and Aegilops tauschii) and common wheat cultivars (T. aestivum) for antixenosis (host selection) and antibiosis (host suitability) to WSS. Host selection was measured as the number of eggs after adult oviposition, and host suitability was determined by examining the presence or absence of larval infestation within the stem. The plants were grown in the greenhouse and brought to the field for WSS infestation. In addition, a phylogenetic analysis was performed to determine the relationship between the WSS traits and phylogenetic clustering.RESULTSOverall, Ae. tauschii, T. turgidum and T. urartu had lower egg counts and larval infestation than T. monococcum, and T. timopheevii. T. monococcum, T. timopheevii, T. turgidum, and T. urartu had lower larval weights compared with T. aestivum.CONCLUSIONThis study shows that wild relatives of wheat could be a valuable source of alleles for enhancing resistance to WSS and identifies specific germplasm resources that may be useful for breeding. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3