Artemisia argyi allelopathy: a generalist compromises hormone balance, element absorption, and photosynthesis of receptor plants

Author:

Li Jinxin,Zhao Tingting,Chen Le,Chen Hong,Luo Dandan,Chen Changjie,Miao Yuhuan,Liu Dahui

Abstract

Abstract Background Allelopathy is expressed through the release of plant chemicals and is considered a natural alternative for sustainable weed management. Artemisia argyi (A. argyi) is widely distributed throughout Asia, and often dominates fields due to its strong allelopathy. However, the mechanism of A. argyi allelopathy is largely unknown and need to be elucidated at the physiological and molecular levels. Results In this study, we used electron microscopy, ionomics analysis, phytohormone profiling, and transcriptome analysis to investigate the physiological and molecular mechanisms of A. argyi allelopathy using the model plant rice (Oryza sativa) as receptor plants. A. argyi water extract (AAWE)-treated rice plants grow poorly and display root morphological anomalies and leaf yellowing. We found that AAWE significantly inhibits rice growth by destroying the root and leaf system in multiple ways, including the integrity of ultrastructure, reactive oxygen species (ROS) homeostasis, and the accumulation of soluble sugar and chlorophyll synthesis. Further detection of the hormone contents suggests that AAWE leads to indole-3-acetic acid (IAA) accumulation in roots. Moreover, ionomics analysis shows that AAWE inhibits the absorption and transportation of photosynthesis-essential mineral elements, especially Mg, Fe, and Mn. In addition, the results of transcriptome analysis revealed that AAWE affects a series of crucial primary metabolic processes comprising photosynthesis in rice plants. Conclusions This study indicates that A. argyi realizes its strongly allelopathy through comprehensive effects on recipient plants including large-scale IAA synthesis and accumulation, ROS explosion, damaging the membrane system and organelles, and obstructing ion absorption and transport, photosynthesis and other pivotal primary metabolic processes of plants. Therefore, AAWE could potentially be developed as an environmentally friendly botanical herbicide due to its strong allelopathic effects.

Funder

Traditional Chinese Medicine Research Project of Hubei Provincial Health Commission

National Key Research and Development Program

the Young Qihuang Scholars of the State Administration of traditional Chinese Medicine

the Special Fund for the Construction of Modern Agricultural Industrial Technology System

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3