Author:
Wang Tian,Ball Jonathon R,Pelletier Mattew H,Walsh William R
Abstract
Abstract
Background
Laboratory spinal biomechanical tests using human cadaveric or animal spines have limitations in terms of disease transmission, high sample variability, decay and fatigue during extended testing protocols. Therefore, a synthetic biomimetic spine model may be an acceptable substitute. The goal of current study is to evaluate the properties of a synthetic biomimetic spine model; also to assess the mechanical performance of lateral plating following lateral interbody fusion.
Methods
Three L3/4 synthetic spinal motion segments were examined using a validated pure moment testing system. Moments (±7.5 Nm) were applied in flexion-extension (FE), lateral bending (LB) and axial rotation (AR) at 1Hz for total 10000 cycles in MTS Bionix. An additional test was performed 12 hours after 10000 cycles. A ±10 Nm cycle was also performed to allow provide comparison to the literature. For implantation evaluation, each model was tested in the 4 following conditions: 1) intact, 2) lateral cage alone, 3) lateral cage and plate 4) anterior cage and plate. Results were analysed using ANOVA with post-hoc Tukey’s HSD test.
Results
Range of motion (ROM) exhibited logarithmic growth with cycle number (increases of 16%, 37.5% and 24.3% in AR, FE and LB respectively). No signification difference (p > 0.1) was detected between 4 cycles, 10000 cycles and 12 hour rest stages. All measured parameters were comparable to that of reported cadaveric values. The ROM for a lateral cage and plate construct was not significantly different to the anterior lumbar interbody construct for FE (p = 1.00), LB (p = 0.995) and AR (p = 0.837).
Conclusions
Based on anatomical and biomechanical similarities, the synthetic spine tested here provides a reasonable model to represent the human lumbar spine. Repeated testing did not dramatically alter biomechanics which may allow non-destructive testing between many different procedures and devices without the worry of carry over effects. Small intra-specimen variability and lack of biohazard makes this an attractive alternative for in vitro spine biomechanical testing. It also proved an acceptable surrogate for biomechanical testing, confirming that a lateral lumbar interbody cage and plate construct reduces ROM to a similar degree as anterior lumbar interbody cage and plate constructs.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献