Placement of LC-II and trans-sacral screws using a robotic arm in a simulated bone model in the supine position – a feasibility study

Author:

Carlson Jon B.ORCID,Zou Jiyao,Hartley Brandi

Abstract

Abstract Purpose The use of a robotic arm has been well-described in the literature for the placement of pedicle screws in spine surgery as well as implants for sacroiliac joint fusion. There are no reports describing the use of a robotic arm to place screws in osseous fixation pathways (OFPs) employed in the treatment of pelvic ring and acetabular fractures outside of a single center in China. Using a Sawbones model, the authors describe a technique for using a robotic arm widely available in Europe and the Americas for placement of 6.5 mm cannulated screws into two OFPs commonly used in the treatment of pelvic and acetabular fractures. Methods Using the Mazor X Stealth Edition (MSXE) robot from Medtronic, the authors were able to place a pin into the pelvis onto which the robot was docked. The authors were then able to designate the area of interest using navigated instruments, and in combination with the MSXE “scan and plan” marker, obtain cross-sectional imaging using the O-Arm and successfully register the MSXE robot. We then used the provided software to plan trajectories for the lateral compression type 2 (LC-II) screw pathway as well as a pathway for a trans-ilio-trans-sacral screw. We describe in detail the steps for setup, planning and placement of 6.5 mm cannulated screws using the MSXE robotic arm into these two OFPs. Results Visual inspection and plain x-rays demonstrated successful placement of the screws into the two planned OFPs. No breach of cortical bone was seen on either visual inspection of the model or demonstrated on post-procedure x-rays. Conclusion It is possible to use the Mazor X Stealth Edition robot to place screws into the LC-II and trans-ilio-transsacral screw pathways in a Sawbones model. This is only a feasibility study, and should in no way be taken to suggest that clinical application of this technique should be attempted.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of a deep-learning-based holographic diagnosis and treatment electromechanical vision system for traditional Chinese medicine;Third International Conference on Electronic Information Engineering and Data Processing (EIEDP 2024);2024-07-05

2. A feasibility cadaver study for placing screws in various pelvic osseous fracture pathways using a robotic arm;European Journal of Orthopaedic Surgery & Traumatology;2024-01-19

3. Advancements in Robotic-Assisted Spine Surgery;Neurosurgery Clinics of North America;2023-12

4. The Use of a Robotic Arm for Fixation of Pelvic Fractures;Journal of Orthopaedic Trauma;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3