Biomechanical testing of fixed and adjustable femoral cortical suspension devices for ACL reconstruction under high loads and extended cyclic loading

Author:

Singh Sarvpreet,Ramos-Pascual Sonia,Czerbak Kinga,Malik Muzaffar,Schranz Peter J.,Miles Anthony W.,Mandalia Vipul

Abstract

Abstract Purpose To compare loop elongation after 5000 cycles, loop-elongation at failure, and load at failure of the fixed-loop G-Lok device and three adjustable-loop devices (UltraButton, RigidLoop Adjustable and ProCinch RT), during testing over extended cycles under high loading. Methods Five devices of each type were tested on a custom-built rig fixed to an Instron machine. The testing protocol had four stages: preloading, cyclic preconditioning, incremental cyclic loading and pull-to-failure. Outcome measures were loop elongation after 5000 cycles, loop-elongation at failure, and load at failure. Results The loop elongation after 5000 cycles for G-Lok was 1.46 ± 0.25 mm, which was comparable to that of RigidLoop (1.51 ± 0.16 mm, p = 1.000) and ProCinch (1.60 ± 0.09 mm, p = 1.000). In comparison, the loop elongation for UltraButton was 2.66 ± 0.28 mm, which was significantly larger than all other devices (p = 0.048). The failure load for all devices ranged between 1455 and 2178 N. G-Lok was significantly stronger than all adjustable-loop devices (p = 0.048). The elongation at failure was largest for UltraButton (4.20 ± 0.33 mm), which was significantly greater than G-Lok (3.17 ± 0.33 mm, p = 0.048), RigidLoop (2.88 ± 0.20 mm, p = 0.048) and ProCinch (2.78 ± 0.08 mm, p = 0.048). There was no significant difference in elongation at failure for the rest of the devices. Conclusions Our study has shown that the G-Lok fixed-loop device and the three adjustable-loop devices (UltraButton, RigidLoop Adjustable and ProCinch RT) all elongated less than 3 mm during testing over an extended number of cycles at high loads, nonetheless, the fixed loop device performed best in terms of least elongation and highest load at failure.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3