On convexity analysis for discrete delta Riemann–Liouville fractional differences analytically and numerically

Author:

Baleanu Dumitru,Mohammed Pshtiwan Othman,Srivastava Hari Mohan,Al-Sarairah Eman,Abdeljawad Thabet,Hamed Y. S.

Abstract

AbstractIn this paper, we focus on the analytical and numerical convexity analysis of discrete delta Riemann–Liouville fractional differences. In the analytical part of this paper, we give a new formula for the discrete delta Riemann-Liouville fractional difference as an alternative definition. We establish a formula for the $\Delta ^{2}$ Δ 2 , which will be useful to obtain the convexity results. We examine the correlation between the positivity of $({}^{\mathrm{RL}}_{w_{0}}\Delta ^{\alpha} \mathrm{f} )( \mathrm{t})$ ( w 0 RL Δ α f ) ( t ) and convexity of the function. In view of the basic lemmas, we define two decreasing subsets of $(2,3)$ ( 2 , 3 ) , $\mathscr{H}_{\mathrm{k},\epsilon}$ H k , ϵ and $\mathscr{M}_{\mathrm{k},\epsilon}$ M k , ϵ . The decrease of these sets allows us to obtain the relationship between the negative lower bound of $({}^{\mathrm{RL}}_{w_{0}}\Delta ^{\alpha} \mathrm{f} )( \mathrm{t})$ ( w 0 RL Δ α f ) ( t ) and convexity of the function on a finite time set $\mathrm{N}_{w_{0}}^{\mathrm{P}}:=\{w_{0}, w_{0}+1, w_{0}+2,\dots , \mathrm{P}\}$ N w 0 P : = { w 0 , w 0 + 1 , w 0 + 2 , , P } for some $\mathrm{P}\in \mathrm{N}_{w_{0}}:=\{w_{0}, w_{0}+1, w_{0}+2,\dots \}$ P N w 0 : = { w 0 , w 0 + 1 , w 0 + 2 , } . The numerical part of the paper is dedicated to examinin the validity of the sets $\mathscr{H}_{\mathrm{k},\epsilon}$ H k , ϵ and $\mathscr{M}_{\mathrm{k},\epsilon}$ M k , ϵ for different values of k and ϵ. For this reason, we illustrate the domain of solutions via several figures explaining the validity of the main theorem.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference35 articles.

1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

2. Srivastava, H.M.: Fractional-order derivatives and integrals: introductory overview and recent developments. Kyungpook Math. J. 60, 73–116 (2020)

3. Srivastava, H.M.: Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 22, 1501–1520 (2021)

4. Srivastava, H.M.: An introductory overview of fractional-calculus operators based upon the Fox–Wright and related higher transcendental functions. J. Adv. Eng. Comput. 5, 135–166 (2021)

5. Goodrich, C.S., Peterson, A.C.: Discrete Fractional Calculus. Springer, Berlin (2015)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3