Author:
Baleanu Dumitru,Mohammed Pshtiwan Othman,Srivastava Hari Mohan,Al-Sarairah Eman,Abdeljawad Thabet,Hamed Y. S.
Abstract
AbstractIn this paper, we focus on the analytical and numerical convexity analysis of discrete delta Riemann–Liouville fractional differences. In the analytical part of this paper, we give a new formula for the discrete delta Riemann-Liouville fractional difference as an alternative definition. We establish a formula for the $\Delta ^{2}$
Δ
2
, which will be useful to obtain the convexity results. We examine the correlation between the positivity of $({}^{\mathrm{RL}}_{w_{0}}\Delta ^{\alpha} \mathrm{f} )( \mathrm{t})$
(
w
0
RL
Δ
α
f
)
(
t
)
and convexity of the function. In view of the basic lemmas, we define two decreasing subsets of $(2,3)$
(
2
,
3
)
, $\mathscr{H}_{\mathrm{k},\epsilon}$
H
k
,
ϵ
and $\mathscr{M}_{\mathrm{k},\epsilon}$
M
k
,
ϵ
. The decrease of these sets allows us to obtain the relationship between the negative lower bound of $({}^{\mathrm{RL}}_{w_{0}}\Delta ^{\alpha} \mathrm{f} )( \mathrm{t})$
(
w
0
RL
Δ
α
f
)
(
t
)
and convexity of the function on a finite time set $\mathrm{N}_{w_{0}}^{\mathrm{P}}:=\{w_{0}, w_{0}+1, w_{0}+2,\dots , \mathrm{P}\}$
N
w
0
P
:
=
{
w
0
,
w
0
+
1
,
w
0
+
2
,
…
,
P
}
for some $\mathrm{P}\in \mathrm{N}_{w_{0}}:=\{w_{0}, w_{0}+1, w_{0}+2,\dots \}$
P
∈
N
w
0
:
=
{
w
0
,
w
0
+
1
,
w
0
+
2
,
…
}
. The numerical part of the paper is dedicated to examinin the validity of the sets $\mathscr{H}_{\mathrm{k},\epsilon}$
H
k
,
ϵ
and $\mathscr{M}_{\mathrm{k},\epsilon}$
M
k
,
ϵ
for different values of k and ϵ. For this reason, we illustrate the domain of solutions via several figures explaining the validity of the main theorem.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference35 articles.
1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
2. Srivastava, H.M.: Fractional-order derivatives and integrals: introductory overview and recent developments. Kyungpook Math. J. 60, 73–116 (2020)
3. Srivastava, H.M.: Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 22, 1501–1520 (2021)
4. Srivastava, H.M.: An introductory overview of fractional-calculus operators based upon the Fox–Wright and related higher transcendental functions. J. Adv. Eng. Comput. 5, 135–166 (2021)
5. Goodrich, C.S., Peterson, A.C.: Discrete Fractional Calculus. Springer, Berlin (2015)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献