The lipoprotein lipase gene in combined hyperlipidemia: evidence of a protective allele depletion

Author:

Wung Shu-Fen,Kulkarni Medha V,Pullinger Clive R,Malloy Mary J,Kane John P,Aouizerat Bradley E

Abstract

Abstract Background Lipoprotein Lipase (LPL), a key enzyme in lipid metabolism, catalyzes the hydrolysis of triglycerides (TG) from TG-rich lipoproteins, and serves a bridging function that enhances the cellular uptake of lipoproteins. Abnormalities in LPL function are associated with pathophysiological conditions, including familial combined hyperlipidemia (FCH). Whereas two LPL susceptibility alleles were found to co-segregate in a few FCH kindred, a role for common, protective alleles remains unexplored. The LPL Ser447Stop (S447X) allele is associated with anti-atherogenic lipid profiles and a modest reduction in risk for coronary disease. We hypothesize that significant depletion of the 447X allele exists in combined hyperlipidemia cases versus controls. A case-control design was employed. The polymorphism was assessed by restriction assay in 212 cases and 161 controls. Genotypic, allelic, and phenotypic associations were examined. Results We found evidence of significant allelic (447Xcontrol: 0.130 vs. 447Xcase: 0.031, χ2 = 29.085; 1df; p < 0.001) and genotypic association (SS: 0.745 vs. 0.939, and SX+XX: 0.255 vs. 0.061) in controls and cases, respectively (χ2 = 26.09; 1df; p < 0.001). In cases, depletion of the 447X allele is associated with a significant elevation in very-low-density lipoprotein cholesterol (VLDL-C, p = 0.045). Consonant with previous studies of this polymorphism, regression models predict that carriers of the 447X allele displayed significantly lower TG, low-density lipoprotein cholesterol (LDL-C) and TG/high-density lipoprotein cholesterol (HDL-C) ratio. Conclusion These findings suggest a role for the S447X polymorphism in combined hyperlipidemia and demonstrate the importance of evaluating both susceptibility and protective genetic risk factors.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3